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ABSTRACT
Regulation of growth ultimately depends on the control of synthesis of new ribosomes. 

Ribosome biogenesis is thus a key element of cell biology, which is tightly regulated in 
response to environmental conditions. In eukaryotic cells, the supply of ribosomal compo-
nents involves the activities of the three forms of nuclear RNA polymerase (Pol I, Pol II and 
Pol III). Recently, we demonstrated that upon rapamycin treatment, a partial derepression 
of Pol I transcription led to a concomitant derepression of Pol II transcription restricted to 
a small subset of class II genes encompassing the genes encoding all ribosomal proteins, 
and 19 additional genes.1 The products of 14 of these 19 genes are principally involved 
in rDNA structure, ribosome biogenesis or translation, whereas the five remaining genes 
code for hypothetical proteins. We demonstrate that the proteins encoded by these five 
genes are required for optimal pre-rRNA processing. In addition, we show that cells in 
which regulation of Pol I transcription was specifically impaired are either resistant or 
hypersensitive to different stresses compared to wild-type cells. These results highlight the 
critical role of the regulation of Pol I activity for the physiology of the cells.

Cellular growth and division is tightly regulated by ribosome synthesis, a major cellular 
undertaking that is energetically very costly (reviewed in refs. 2 and 3). A striking feature 
of ribosome synthesis is a requirement for the coordinated activity of the three forms of 
RNA polymerase to produce the building blocks for ribosome construction. Pol I synthe-
sizes the 35S rRNA which is processed into mature 25S, 18S and 5.8S rRNAs; Pol II 
synthesizes the mRNAs encoding the ribosomal proteins (RPs); and Pol III synthesizes 5S 
rRNA. How in this process coordination between the three forms of RNA polymerase is 
achieved is still unclear.

Recently, we showed in yeast that the accumulation of large ribosomal RNAs, as a 
result of deregulated Pol I transcription, led to the concomitant accumulation of 5S 
rRNA, of mRNAs encoding RPs, and of fully assembled ribosomes.1 This observation 
points to a central role for Pol I activity in ribosome synthesis and suggests that Pol I 
transcription integrates the coordinated regulation of the two other forms of nuclear RNA 
polymerase.

THE CARA STRAIN, OR HOW TO MAKE Pol I TRANSCRIPTION CONSTITUTIVE?
In yeast, Pol I transcription initiation requires four general transcription factors: the 

upstream activating factor (UAF), the core factor (CF), the TATA binding protein (TBP) 
and the monomeric factor Rrn3. The two multimeric complexes UAF and CF bind to the 
rDNA promoter in conjonction with TBP to form the class I preinitiation complex,4-6 
whereas establishment of a transcription-competent initiation complex requires the inter-
action of Rrn3 with both Pol I and promoter-bound factors.7,8 The essential and reversible 
interaction of the enzyme with Rrn3 is a critical event for Pol I transcription (reviewed 
in refs. 9–11), and has been shown to be a prime target for the regulation of the Pol I 
activity.8,12,13 To interfere with these mechanisms, we constructed a yeast strain, named 
CARA (for Constitutive Association of Rrn3 and A43), in which the endogenous, essential 
Rrn3 factor and the A43 subunit of the Pol I that interacts with Rrn3,14 were supplied as 
an Rrn3-A43 fusion protein.1 The chimeric construct assembled properly within Pol I and 
formed a constitutively active, non dissociable Pol I-Rrn3 complex. Remarkably, under 
standard growth conditions, the CARA strain was not affected for growth and microarray 
analysis revealed that CARA cells have an mRNA expression profile indistinguishable from 
that of wild-type cells (Fig. 1, no rapamycin).
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Ribosome synthesis is tightly regulated in response to a wide 
variety of intra and extra cellular stimuli.2,15,16 In particular, 
the evolutionarily conserved TOR (target of rapamycin) signaling 
pathway regulates ribosome biogenesis and protein synthesis (in 
addition to nutrient import, autophagy and cell cycle progression). 
The TOR pathway is specifically inhibited by the antifungal and 
anticancer drug rapamycin. Upon rapamycin treatment, the level of 
all transcripts analyzed in our microarray experiments was similarly 
regulated in wild-type and CARA cells, with the notable exception of 
147 mRNAs that were significantly over-represented in CARA cells 
(Fig. 1 and ref. 1). Remarkably, these account for only 2.5% of all the 
mRNAs analyzed. This striking observation demonstrates that upon 
rapamycin treatment, deregulation of Pol I transcription leads to a 
selective and concomitant deregulation of a highly specific subset of 
class II transcripts. The genes encoding these mRNAs can be grouped 
in four classes (see Table 1 for a summary):

(1) Group A represents the vast majority (128 of 147) of the 
genes specifically deregulated in CARA cells and encompasses the 
RP genes. Among the 138 RP genes of the yeast S. cerevisiae, 131 are 
represented on the DNA array used in the experiment. Surprisingly, 
the level of only 3 RP mRNAs is similar in CARA and wild-type cells 
upon rapamycin treatment (Fig. 1). Each of the corresponding genes 
(RPL1A, RPL7B and RPL33A) belongs to a related pair, a general 
feature in S. cerevisiae that has retained many of the duplicated RP 
genes that were generated following the ancestral whole genome 
duplication.17 In the experiment depicted in Figure 1, the level of 
mRNAs of the other member of each gene pair (namely RPL1B, 
RPL7A and RPL33B) however, was significantly overrepresented in 
CARA cells. Since for each pair of RP genes, the two corresponding 
mRNAs have a near identical nucleotide sequence and thus cannot 
be easily distinguished on the microarray, these data suggest that 
the absence of a specific rapamycin-dependent deregulation of the 
RPL1A, RPL7B and RPL33A genes in the CARA cells in fact likely 
reflects technical limitations.

(2) Group B (see Table 1) includes eight genes whose products 
are involved in ribosome synthesis, assembly and/or function: Utp22 
is involved in the 35S primary transcript processing,18 Emg1 is 
required for the maturation of the 18S rRNA and for 40S ribosome 
production,19 Stm1 directly binds to mature 80S ribosomes and 
polysomes,20 Rpg1 is a translation initiation factor,21 Asc1 acts 
as a negative regulator of translation,22 and Cdc60 aminoacylates 
leucyl-tRNA.23 Finally, SDC1 and SPP1, whose products are two 
subunits of the COMPASS (Set1C) complex which methylates lysine 
4 of histone H3, and which is involved in rDNA silencing,24,25 are 
also specifically deregulated in CARA cells during the rapamycin 
treatment.

(3) Group C (see Table 1) contains six genes encoding proteins 
whose function is apparently unrelated to cytoplasmic ribosome 
or translation. LEA1 codes for a component of U2 snRNP.26 Gip2 
is a putative regulatory subunit of the protein phosphatase Glc7p, 
involved in glycogen metabolism.27 FET3 encodes an integral 
membrane multicopper oxidase, which mediates resistance to copper 
ion toxicity.28,29 BEM4 codes for a protein involved both in the estab-
lishment of cell polarity and bud emergence, in Rho protein signal 
transduction,30 and in maintenance of proper telomere length.31 
Finally, the products of the last two genes are involved in mitochon-
drial metabolism: CBP3 encodes a mitochondrial chaperone required 
for assembly of the cytochrome bc1 complex32,33 whereas MRLP24 
codes for a mitochondrial RP of the large subunit.34

(4) The last class of genes (group D) encompasses five non-essen-
tial genes encoding hypothetical proteins (YDR445C, YER039C-A, 

YOL047C, YOL048C and YPL216W, see Table 1). To test whether 
these proteins are involved in ribosome synthesis, the pre-rRNA 
processing pathway was characterized by Northern blot hybridiza-
tion in yeast strains deleted for each of these five genes (Fig. 2). All 
five strains analyzed were defective for pre-rRNA processing. The 
pathway leading to the synthesis of the small ribosomal subunit 
rRNA (18S rRNA) was most affected (cleavages at sites A0-A2). Since 
the aberrant 23S RNA that extends from the transcription start site 
to site A3 was not detected in any of the strains tested, we concluded 
that cleavages at sites A0-A2 are delayed to various extent and that all 
five genes of class D are required for optimal pre-rRNA processing.

Altogether, our microarray analysis underscores a very high 
specificity for the 147 mRNAs distinctively deregulated in CARA 
cells upon rapamycin treatment. The most prominent observation 
concerns the RP genes (group A). Although spread throughout the 
yeast genome, these genes are arguably the most coordinately regu-
lated cluster of genes and are thus considered as a regulon (i.e., the RP 
regulon).2,16,35 Remarkably, however, regulation of another regulon, 
the Ribi regulon (for ribosome biogenesis), which shows nearly 
identical transcriptional responses as RP genes to environmental or 
genetic perturbations,16,36-39 is similar in CARA and wild-type cells 
upon rapamycin treatment (Fig. 1). The Ribi regulon encompasses 
a large number of genes (>200) encoding proteins involved in ribo-
some biogenesis, a complex process implicating accessory factors that 

Figure 1. Members of the Ribi regulon are not deregulated in the CARA strain 
upon rapamycin treatment. Wild-type (WT) and CARA cells were grown in 
complete medium to OD600 = 1 (mid-log phase) and further incubated for  
60 min with rapamycin or without rapamycin (inset). Cells were harvested 
and total RNAs were extracted. RNAs (20 mg) were labeled by reverse tran-
scription in the presence of Cy5 dUTP (WT) or Cy3 dUTP (CARA) and used 
to probe a microarray harboring all yeast ORFs. Results were analyzed using 
the GeneSpring software (Silicon Genetics). A scatterplot representation of 
expression levels is displayed. Each individual spot corresponds to a gene, 
and its location on the diagonal indicates that the abundance of the corre-
sponding mRNA is similar in both strains. mRNAs encoding RP (black spots) 
are present at the same level in untreated WT and CARA cells (inset) but 
are specifically overrepresented in CARA cells in the presence of rapamycin 
(from a threefold to a 13-fold factor, with an average factor of 7.7). In sharp 
contrast, after rapamycin treatment, the abundance of mRNAs from the Ribi 
regulon (pink spots) remains identical in both WT and CARA strain. The two 
spots, corresponding to RRN3 and RPA43 mRNAs (indicated by an arrow), 
which belongs to the Ribi regulon, are overexpressed in CARA cells because 
the Rrn3-A43 fusion is expressed from a multicopy plasmid.
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assemble and modify rRNA and RPs36-38,40 as well as additional 
functional categories including subunits of Pol I and Pol III, enzymes 
involved in ribonucleotide metabolism, tRNA synthetases, and  
translation factors.16,37,38 The Ribi regulon thus consists of non-RP 
genes that enhance translational capacity.

In conclusion, the observation that the deregulation of Pol I 
activity specifically affects transcription of the RP regulon but not 
that of the Ribi regulon (Fig. 1) emphasizes the very high specificity 
of the cross-talk existing between the Pol I and Pol II transcriptional 
machineries.

WHAT ARE THE CONSEQUENCES OF RIBOSOME BIOGENESIS 
DEREGULATION?

Genome-wide analyses have clearly documented that most envi-
ronmental alterations trigger important modifications of the yeast 
transcriptome. In particular, under stressful conditions, genes related 
to the ESR (Environmental Stress Response) exhibit either of two 
opposite responses: a cluster of around 600 genes, including all RP 
genes, is repressed, whereas a second cluster of approximately 300 
genes is induced.16 Even if Pol I and Pol III transcriptional activities 
were not the central focus of these systematic analyses, they are down 
regulated by most of the environmental stresses.41-45 Altogether, 
these studies indicate that the concomitant down regulation of the 
synthesis of all ribosomal components is a general feature of yeast 
physiology in response to environmental changes. Since ribosome 
biogenesis is one of the most energy consuming cellular process,3 it is 
tempting to attribute this phenomenon to a cellular “energy-saving” 
strategy but other explanations can be considered. For instance, it 

has been shown that signal-induced changes in the transcriptome are 
amplified at the translational level.46 This effect, named potentiation, 
is characterized by a more efficient translation of mRNAs encoding 
genes that are induced in the transcriptome, and by lower transla-
tion efficiency for mRNAs encoding genes that are down regulated. 
Therefore, to modify rapidly the protein content of cells, one can 
imagine that a down regulation of ribosome biogenesis is required, 
while modifying the transcriptome profile. Little is known, however, 
on the effect on cell physiology of a deregulation of ribosome 
synthesis under stress conditions.

Taking advantage of the properties of the CARA strain, we inves-
tigated the effect of deregulating ribosome biogenesis in the presence 
of rapamycin.

In the absence of stress, we did not detect any growth differences 
between CARA and wild-type cells in complete medium (YPD), 
either liquid1 or solid (Fig. 3A). In contrast, CARA cells were 
hypersensitive to rapamycin in plate assays for all drug concentra-
tions tested (from 0.05 mg/ml to 1.6 mg/ml, Fig. 3B and data not 
shown). This hypersensitivity to rapamycin was observed for cells 
spotted from log-phase or from post-diauxic cultures (Fig. 3B). 
This result indicates that interfering with the rapamycin-dependent 
transcriptional repression of ribosomal components is deleterious for 
cell growth.

Next, we investigated how CARA cells responded to hydrogen 
peroxide, which, in contrary to rapamycin, induces a transient 
modification of the expression pattern of the ESR genes.16,47 
Wild-type and CARA cells, from either log-phase or post-diauxic 
culture, were spotted on plates containing different concentration 
of hydrogen peroxide. Wild-type and CARA cells from log-phase 

Table 1 Class II transcripts deregulated in CARA cells upon rapamycin treatmenta

 CARA / WTb

Group Number of Genes Systematic Name  Common Name   Biological Processc 
    No Rapamycin + Rapamycin
A 128  RPs 1.0d 7.7d Ribosome Components
B 8 YBR079C 8 YBR079C8 YBR079C RPG1 0.9 5.5 
  YDR469W SDC1 1.0 5.0 
  YGR090W UTP22 0.7 3.6 rDNA structure, ribosome
  YLR150W STM1 0.9 3.7 biogenesis or translation
  YLR186W EMG1 0.9 4.5 
  YMR116C ASC1 0.9 4.3 
  YPL160W CDC60 0.7 6.0 
  YPL138C SPP1 1.0 3.9 
C 6 YER054C GIP2 1.1 3.3 
  YMR058W FET3 1.1 3.0 
  YMR193W MRPL24 1.0 4.4 Function unrelated
  YPL161C BEM4 0.9 6.0 to ribosome biogenesis
  YPL213W LEA1 0.9 3.4 
  YPL215W CBP3 1.1 9.4 
D 5 YDR445C - 1.0 3.2 
  YER039C-A - 0.9 3.4 
  YOL047C - 1.0 5.2 Uncharacterized function
  YOL048C - 0.9 3.9 
  YPL216WYPL216W - 1.1 9.0 

aGenes specifically over-represented (>= 3-fold increase) in CARA cells versus WT cells in the presence of rapamycin. bRatio of expression in CARA cells over WT cells. cAccording to the Saccharomyces Genome Database 

available at http://www.yeastgenome.org. dAverage for the 128 RP genes (for details, see ref. 1)
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cultures exhibited the same sensitivity to hydrogen peroxide (Fig. 3C 
and D). Surprisingly, CARA cells were significantly more resistant to 
hydrogen peroxide compared to wild-type cells when spotted from 
post-diauxic cultures (Fig. 3C and D). The reasons why post-diauxic 
culture cells show a greater resistance to hydrogen peroxide when 
containing a larger amount of assembled ribosome1 are unclear, but 
may indicate that control of the protein biosynthesis machinery is 
important for the oxidative equilibrium of the cell, in agreement 
with recent data showing that changes in translational fidelity affect 
this balance.48

In conclusion, the recent characterization of the CARA strain 
strongly supports the emerging concept that Pol I activity is a key 
element for the coordinated synthesis of ribosome components. To 
dissect the molecular mechanisms involved, and more specifically 
to understand how the level of Pol I transcription impacts on Pol II 
transcription will certainly represent a major breakthrough. Another 
important issue is to elucidate how Pol I activity influence the level 
of the 5S rRNA synthesized by the Pol III. In CARA cells, upon 
rapamycin treatment, we observed an attenuated decrease of the level 
of this transcript concomitant to the attenuated down regulation 
of Pol I transcription.1 Whether this 
deregulation of 5S rRNA is transcrip-
tional and/or post-transcriptional is an 
important question that remains to be 
addressed.

Finally, a crucial question is to deter-
mine whether the central role of Pol 
I activity in the control of ribosome  
biogenesis has been evolutionarily 
conserved. To unravel how human cells 
regulate ribosome biogenesis is essen-
tial, as exemplified by numerous data 
suggesting that altering the protein 
synthesis machinery may promote 
malignant progression (see Ref. 49 for a 
review). The possibility that Pol I activity 
plays in mammalian cells a predominant 
role for the supply of ribosome compo-
nents rationalizes the abundant evidence 
that Pol I transcription is altered in cancer cells. It may also explain 
why changes in nucleolar structure are recognized as a reliable 
marker of cellular transformation.50 Whether deregulation of Pol I 
transcription might be an initiating step in tumorigenesis (see ref. 51 
for a discussion of this hypothesis) by promoting increased cellular 
growth, proliferation, and transformation is thus a critical question 
that needs to be addressed in the near future.
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