

FIG S1 : CRAC analysis revealed specific binding of Kre33 to leucine and serine tRNAs (A), 18S rRNA (B) and snoRNAs snR4 and snR45 (C). A) Overview of CRAC-results for Kre33 binding to serine and leucine tRNA species. The left y-axis shows the total number of times each nucleotide within an RNA fragment was mapped to the RNA sequence (x-axis); the right y-axis shows the number of reads carrying a substitution (red) or deletion (orange). Around the acetylated cytosine (*) a specific peak is observed in Kre33 cross-linked tRNAs. For other tRNA species or for the same species in control CRAC-experiments these substitution-peaks were not found. B) Read-alignments for Kre33 on the 18S rRNA show specific binding to the 5' domain (pink), around helices 34 (orange) and 45 (blue). Putative crosslink sites (yellow circles) are seen as a gap in these sequences. Acetylated residues C1280 and C1773 (purple) fall within cross-linked segments. Note that Kre33 binding could be incompatible with that of modifying snoRNPs snR44, snR49, snR51, snR55, snR40, and snR83/Ruf3. **C)** As (B) but then for Kre33 binding to snR4 and snR45. Models of snoRNAs interacting with target rRNA sequence (blue) with the acetylated cytosine residue (red) are as in Fig 4.

SUPPLEMENTAL DATA Sharma et al 2017 IDOI:10.1371/journal.pgen.1006804

FIG S2: Phylogenetic analysis of snR45

A) Alignment of snoRNAs homologous to snR45. Sequences were retrieved and aligned as described previously [4]. The guide sequences (GS1 and GS2) and the C/D and C' motifs stand out due to their high level of conservation (deep blue shade). The non-canonical D' motif is quite variable and assigned based on 2D-modelling (B). Dot-bracket-notation shows the general 2D-structure (top-line). **B)** Secondary structure models of snR45 for the indicated yeast species. Shown are the conserved regions with guide sequences GS1 and GS2 (red), the C/D and C'/D' motifs (black), the pseudo-knot (olive) and helices with strong phylogenetic support (teal).

FIG S3: Phylogenetic analysis of snR4 with alignment (**A**) and 2D-models (**B**) as described for <u>S2 Fig</u>. Note, *Torulaspora delbrueckii* snR45 could be modeled with a D' box using a canonical sequence (CUGA, red ellipse) instead of the CUGU found in *S. cerevisiae* and closely related species.

SUPPLEMENTAL DATA Sharma et al 2017 IDOI:10.1371/journal.pgen.1006804

FIG S4: snR4 is involved in 18S rRNA acetylation at C1280.

A) Overlaid RP-HPLC chromatograms of the nucleosides derived from fragments isolated using mung bean nuclease assay, containing ac⁴C1280 (oligo 34, black) and ac⁴C1773 (oligo 45, red) isolated from a strain lacking snR4 (Δ snr4). Loss of snR4 leads to complete loss of ac⁴C1280 without affecting ac⁴C1773. **B)** Overlaid RP-HPLC chromatogram of tRNAs from strains lacking snR4 (Δ snr4, green), snR45 (Δ snr45, blue) and Tan1 (Δ tan1, red) strain. Loss of snR4 and snR45 does not affect tRNA acetylation.

SUPPLEMENTAL DATA Sharma et al 2017 IDOI:10.1371/journal.pgen.1006804

FIG S5: Crosslinking of Nop56, Nop58 and Nop1 to snR4 and snR45

2-D structure models (top panel) based on phylogenetic comparison and DMS-modification for snR4 (**A**) and snR45 (**B**) showing Kre33 cross-linked sites (identified in the present study, yellow ovals), along with the binding regions (transparent) and cross-linking sites (opaque ovals) of Nop1 (purple), Nop56 (green), and Nop58 (blue) determined previously [<u>4</u>] and as colored squares overlaid on the alignments (bottom panel) of unique reads with the snoRNA sequences. For further details, see legend <u>Fig 4</u>.

FIG S6: Physical interaction of snR4 and snR45 with 18S rRNA is indispensable for 18S rRNA acetylation

2D models of snR4 (**A**) and snR45 (**B**) along with zoomed-in views (**C and D**) for mutated regions. The dotted red box in (B) indicate a mutation that interfered with stable expression of the snoRNA. See for further details the legend for Fig 5, **F**) RP-HPLC chromatograms of 18S rRNA isolated from a strain carrying a double deletion for *SNR4* and *SNR45* expressing the indicated mutant versions of snR4 (E) and snR45 (F). (**G**) Northern blot developed with snoRNA-specific probes showing stable expression of snr4 and snr45 mutants. 5S rRNA was used as loading control. **H**) Sedimentation profile of snR4 (snr4-b) and snR45 (snr45-b) with an altered GS2 (cf. Fig 5) to test their association with ribosomes/pre-ribosomes; northern analysis in (H), snoRNA-specific probes and western-blots were probed with anti-TAP, anti-Nop1, and anti-Nop2 antibodies to detect Kre33-TAP, Nop1 and Nop2, respectively.

FIG S7: Sedimentation profiles of snR4 and snR45 upon Kre33 depletion

Kre33 was depleted using a strain containing HA tagged Kre33 under galactose promoter (pGAL1::3HA-kre33) that was grown in YPGSR (yeast extract, peptone, galactose-sucrose-raffinose, 2% w/v each) to mid-log phase, washed in pre-warmed water and transferred to YPD for up to 12 h. We compared t0 (time point at which cells were transferred to YPD) and t6 (6hours after transfer to YPD). A) Western blot showing that glucose mediated depletion of Kre33 (top panel) was extremely effective and after 6 hours Kre33 was depleted to a level beyond the Western blot detection limit. The bot was developed using mouse anti-HA (SIGMA) and goat anti-mouse-HRP (Santa Cruz Biotechnology) antibodies. Glucose 6 phosphate dehydrogenase (G6PDH) was used as a loading control (lower panel). The blot was developed using rabbit anti G6PDH and donkey-anti rabbit (Santa Cruz Biotechnology) antibodies. B) Sedimentation profiles of snR4 and snR45 at t0 and t6.

S1 Table. Hybrids containing snoRNA sequences

Read No. ‡	Sequence of hybrids between 18S rRNA and snoRNA	ΔG*	5' Source	from	to	3' Source (motif)	from	to
130876-1_2	T <u>AGTGAAACTGCGAATGGCTC</u> CACG <mark>GTGATGA</mark> AAGACTGGT	-3	RDN37-1	80	99	U14 / snR128 (C)	2	21
-12350-2_5	AGTGAAACTGCGAATGGCTCAA <mark>CATTCGCAGTTTC</mark> CACG <mark>C</mark>	-20.6	RDN37-2	80	100	U14 / snR128	27	46
63756-1_6	TTGGCCTTTT <mark>TCACCACC</mark> TTTAT <u>TTTG</u> TG <mark>GGTGGTGG</mark> TGC	-14.5	snR4	133	154	<u>RDN37-1</u>	1257	1274
97648-1_3	T <u>AAGGAAGGCAGCAGGCGCGC</u> TACT <mark>ATGATGA</mark> ATGACATTA	-1.8	<u>RDN37-1</u>	416	435	snR52 (C)	1	20
99477-1_3	TGGAGGGCAAGTCTGGTGCCAGCAAAAAGCTGTGCACCAG	-18.1	<u>RDN37-1</u>	547	570	snR40	14	31
133303-1_2	TGGTGCATGGCCGTTCTTGGTAAATGACGAGAAAAAAGCTG	-7.4	<u>RDN37-1</u>	1269	1289	snR40 (C)	1	22
301878-1_1	TGGTGGTGCATGGCCGTTCTTGTAAATGACGAGAAAAAAGC	-3.2	<u>RDN37-1</u>	1266	1286	snR40	1	20
77693-1_4	CACAT <mark>CATGCATCACCATCT</mark> TTTTGTG <mark>GGTGGTGG</mark> TGCATG	-21.2	snR55	76	94	<u>RDN37-1</u>	1257	1277
-18530-1_2	GAT <mark>CATGCATCACCATCTGA</mark> TTAAGGATTGACAGATTGAG	-6.3	snR55	78	98	<u>RDN37-2</u>	1225	1243
125983-1_2	GA TTTT GTG <mark>GGTGGTGG</mark> TGCATGATCCG <mark>GCGA</mark> TGATTCCTT	-6.8	<u>RDN37-1</u>	1255	1277	snR55 (D')	38	55
251846-1_1	GGA <u>TTTGTG<mark>GGTGGTGG</mark>TGCA</u> AAT <mark>CATGCATCACCAT</mark> CTGA	-19.9	<u>RDN37-1</u>	1258	1275	snR55 (D)	78	96
62794-1_6	G TTTT GTG <mark>GGTGGTGG</mark> TGCATAGCAT <mark>CATGCATCACCAT</mark> CT	-23.2	<u>RDN37-1</u>	1257	1279	snR55	77	94
310610-1_1	T <u>TTTTGTG<mark>GGTGGTGG</mark>TGCAT</u> TGGAAT <mark>ATGTGCC</mark> ATGGATT	-10.3	<u>RDN37-1</u>	1257	1276	snR55 (C')	55	75
301495-1_1	TG <mark>GGTGGTGG</mark> TGCATGGCCGTT <mark>C</mark> ATGGATTACAT <mark>CATGCAT</mark>	-8.9	<u>RDN37-1</u>	1262	1284	snR55	68	86
92915-1_3	CCGCGGTAATTCCAGCTCCAATAAAAACAAAAACAAA	-13	RDN37-1	572	594	snR77	20	38
99442-1_3	T <u>GCGGTAATTCCAGCTCCAATA</u> AA <mark>AGCTGGAATTACTG</mark> G <mark>CT</mark>	-20.6	<u>RDN37-1</u>	574	594	snR77	26	45
183610-1_1	CA <u>GTAATTCCAGCTCCAATA</u> AA <mark>AGCTGGAATTACTG</mark> G <mark>CTGA</mark>	-17.2	<u>RDN37-1</u>	577	594	snR77 (D')	26	47
32255-1_15	CGGTAATTCCAGCTCCAATAAAAAGCTGGAATTACTGGCTGA	-20.4	<u>RDN37-1</u>	575	594	snR77 (D')	26	47
202069-1_1	CGGTAATTCCAGCTCCAATAAAAAGCTGGAATTACTGGCTG	-20.4	<u>RDN37-1</u>	575	594	snR77	26	46
202068-1_1	CGGTAATTCCAGCTCCAATAAAAAGCTGGAATTACTGGC	-20.4	<u>RDN37-1</u>	575	594	snR77	26	44
125360-1_2	GATGATCAGATACCGTCGTAGT	-7.1	RDN37-1	994	1020	snR79 (C)	1	18
	Sequence of hybrids between 25S rRNA and snoRNA							
-10468-1_11	CTATTACAGTCGATGAGGATGATCGTCGAATTTGGGTATA	-9.8	snR4	3	22	<u>RDN37-2</u> (snR40/snR60)	3438	3457

226958-1_1	G <u>ACGAATAAGGCGTCCTTG<mark>TAC</mark>ATTCTTAAGAATGACAAG</u>	-3.5	<u>RDN37-1</u>	5731	5749	snR45	125	145
226959-1_1	G <u>ACGAATAAGGCGTCCTTG<mark>TAC</mark>ATTCTTAAGAATGACAAGG</u>	-5.8	<u>RDN37-1</u>	5731	5749	snR45	125	146
114554-1_2	A <u>CTGTTGGGACCCGAAAGATG</u> ATTTA <mark>GTGATGA</mark> TACTGCCG	-2	<u>RDN37-1</u>	3344	3363	snR39B (C)	1	20
92889-1_3	CC <u>GAGCTTGACTCTAGTTTGAC</u> TCAA <mark>ATGATGA</mark> AATACCAA	-5.6	<u>RDN37-1</u>	4963	4982	snR66 (C)	2	20
285819-1_1	TATAGGGGCGAAAGACTACTATCGAAATGAAGATAAAAATT	-4	<u>RDN37-1</u>	3454	3471	snR60 (C')	46	70
117007-1_2	C <u>AAGTGGGAGCTTCGGCGCC</u> ACTATCGAA <mark>ATGAAGA</mark> TAAAA	-5.7	<u>RDN37-1</u>	5012	5031	snR60 (C')	47	67
	Sequence of other hybrids with snoRNA							
97363-1_3	T <u>AAAGGGTTGCGCTTCTTTC</u> CTGCGCAACCCA TT GAT <mark>CTTG</mark>	-18.4	<u>TEF1/2</u>	1286	1304	snR45	100	123
legend	target guide box C, D, C', or D' Kre33-Xlink site snR4-target							

‡ Reads are from the main data set (data-set II) and from a library with ~5-fold less coverage (-*dataset I*) * predicted folding energy (kcal/mol) of the hybrid

S2 Table. Strains, plasmids and oligonucleotides

Name	Description	Source
CEN.PK1303-5A	MAT a, ura3-52;his3-∆1; leu2-3,112; trp1-289; MAL2-8 [°] , SUC2, snr45(1,172)::loxP-kanMX4-loxP	This study
CEN.PK1351-5B	MAT a, ura3-52;his3-∆1; leu2-3,112; trp1-289; MAL2-8° , SUC2, snr4(- 50,186)::loxP-kanMX4-loxP	This study
CEN.WA4-9C	MAT $\alpha,$ ura3-52;his3- $\Delta1$; leu2-3,112; trp1-289; MAL2-8° , SUC2, snr4(-50,186)::loxP-kanMX4-loxP; snr45(1,172)::loxP-kanMX4-loxP	This study
BY4741	MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0	Euroscarf
SC1403	MATa; ura3-52; leu2-3,112; KRE33::TAP-KIURA3	Euroscarf
SC1541	MATa; ura3-52; leu2-3,112; NOP58::TAP-KIURA3	Euroscarf
SC1110	MATa; ura3-52; leu2-3,112; GAR1::TAP-KIURA3	Euroscarf
BY.WA5-2B	MAT α, ura3Δ0; leu2Δ0; his3Δ1; KRE33::kanMX4 + pSH35	(Sharma et al., 2015)
BY.WA6-1B	MAT α, ura3Δ0; leu2Δ0; his3Δ1; KRE33::kanMX4 + pSH35a	(Sharma et al., 2015)
BY.WA8-1B	MAT α, ura3Δ0; leu2Δ0; his3Δ1; KRE33::kanMX4 + pSH35c	(Sharma et al., 2015)
BY.WA9-1C	MAT A, ura3∆0; leu2∆0; his3∆1; KRE33::kanMX4 + pSH35d	(Sharma et al., 2015)
pJN23	A derivative pRS426 plasmid carrying SNR4	This study
pJN23a	A derivative pRS426 plasmid carrying snr4(1,8)::TTGATTAT	This study
pJN23b	A derivative pRS426 plasmid carrying snr4(142,150)::GGTGGTGGG	This study
pJN23c	A derivative pRS426 plasmid carrying snr4(93,102)::GGTTGATTCT	This study
pJN23d	A derivative pRS426 plasmid carrying snr4(56,66)::TTTAATGAGGT	This study
pJN23e	A derivative pRS426 plasmid carrying snr4(136,142)::AAGGGGG	This study
pJN23f	A derivative pRS426 plasmid carrying snr4(130,150)::ATCTTGTTAC	This study
pJN23g	A derivative pRS426 plasmid carrying snr4(93,102)::AGGTTT; (130,150)::ATCTTGTTAC	This study
pJN23h	A derivative pRS426 plasmid carrying snr4(56,66)::TCTTCTCG; (93,102)::AGGTTT; (130-150)::ATCTTGTTAC	This study
pJN28	A derivative pRS426 plasmid carrying SNR45	This study
pJN28a	A derivative pRS426 plasmid carrying snr45(3,10)::GACCTTCC	This study
pJN28b	A derivative pRS426 plasmid carrying snr45(77,84)::GTAACCAG	This study
pJN28c	A derivative pRS426 plasmid carrying snr45(61,68)::AGGACGGC	This study
pJN28d	A derivative pRS426 plasmid carrying snr45(117,127)::TTGGAACAATG	This study
pJN28e	A derivative pRS426 plasmid carrying snr45(144,150):: Δ	This study
pJN28f	A derivative pRS426 plasmid carrying snr45(110,118):: Δ	This study
pJN28g	A derivative pRS426 plasmid carrying snr45(79,84)::TTGTGTAAGA; (118,127)::CCGTGGCCTTTTTCACCACCT	This study
pJN28h	A derivative pRS426 plasmid carrying snr45(61,68)::AAATAACTCTA; (79,84)::TTGTGTAAGA; (118,127)::CCGTGGCCTTTTTCACCACCT	This study
pSH35	A derivative pPK468 plasmid carrying Kre33-7xHis	(Sharma et al., 2015)
pSH35a	A derivative pPK468 plasmid carrying kre33-K289A	(Sharma et al., 2015)
pSH35c	A derivative pPK468 plasmid carrying kre33-H545A	(Sharma et al., 2015)
pSH35d	A derivative pPK468 plasmid carrying kre33-R637A	(Sharma et al., 2015)
Name	Sequence 5' —> 3'	
pJN23-A1	GAATTGGGTACCGGGCCCCCCCCGAGGTCGACGGTATCGATAAGAAAG CTTTGTAAATATG	
pJN23-A2	GAGCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCGGTATAAT AGAAGAATTTTAG	

pJN28-A1	GAATTGGGTACCGGGCCCCCCCCGAGGTCGACGGTATCGATAGATTAA CTTGATAATGGAGTTG	
pJN28-A2	GAGCTCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCGAGACCAA TCGACAGTCTTC	
snR4-nb	CTAGAGTTATTTTAAAACAC	
snR45-nb	GCGCAGGAACCGCTATCTCC	
snR4-Mod- probe	TATTAATAGTTAAAGCACCG	
snR45-Mod- probe	ATTTTATAAAAGCGTCCTTG	
pJN23a-sp-FP	CATTTTTTTATTTCAAAATCCCCATCTTGATAATCAGTCGATGAGGATAGGT TATAG	
pJN23a-sp-RP	CTATAACCTATCCTCATCGACTGATTATCAAGATGGGGGATTTTGAAATAAA AAAATG	
pJN23b-sp-F2	GATTGTGCCGTGGCCTTTTGGTGGTGGGTGGGTTATAGCGGTGCTTTAACTATT AATAACTG	
pJN23b-sp-R2	ATTAATAGTTAAAGCACCGCTATAACCCACCACCAAAAGGCCACGGCACA ATCCACATC	
snR4-cF	GGCGTTTTTCACAAAGTGGTTGATTCTTGCTTTCCTGGGTCGATGTGG	
snR4-cR	CGACCCAGGAAAGCAAGAATCAACCACTTTGTGAAAAACGCCCC	
pJN23d-sp-F2	GTGTAACATCTGTGTTTTATTTAATGAGGTGTTATCCGGGGGCGTTTTTCAC AAAG	
pJN23d-sp-R2	GTGAAAAACGCCCCGGATAACACCTCATTAAATAAAACACAGATGTTACAC ATG	
snR4-eF	GGGTCGATGTGGATTGTGCCGTGGAAGGGGGGCACCACCTTTATAGCGGT GCTTTAAC	
snR4-eR	GCACCGCTATAAAGGTGGTGCCCCCTTCCACGGCACAATCCACATCGAC CCAGGAAAGC	
snR4-fF	GGATTGTGATCTTGTTACTTATAGCGGTGCTTTAACTATTAATAAC	
snR4-fR	CGCTATAAGTAACAAGATCACAATCCACATCGACCCAGG	
snR4-gF2	CACAAAGTAGGTTTTGCTTTCCTGGGTCGATGTG	
snR4-gR2	GCAAAACCTACTTTGTGAAAAACGCCCCG	
pJN23h-sp-F3	CATCTGTGTTTTATCTTCTCGGTTATCCGGGGGCGTTTTTCACAAAGTAGGT TTTGC	
pJN23h-sp-R3	CCCGGATAACCGAGAAGATAAAACACAGATGTTACACATGAACTATAACC	
pJN28a-sp-FP	GGTTTCATTTAAAGAAACCAATCTGGAAGGAAGTTTTTAAAAGAATACGAT G	
pJN28a-sp-RP	CGTATTCTTTTAAAAACTTCCTTCCAGATTGGTTTCTTTAAATGAAACCTCC	
pJN28c-sp-F2	GCGTTTCAAATCGAACAATAGGACGGCGAGCGATCTGAGGTTTTAATGGA G	
pJN28c-sp-R2	CATTAAAACCTCAGATCGCTCGCCGTCCTATTGTTCGATTTGAAACGCAAA TAATATC	
pJN28e-sp-F2	CTTGTTACATTCTTAAGAATGACATTTTATAAAATTCTGATTCTTTTTCTTT C	
pJN28e-sp-R2	GAAAGAAAAAAGAATCAGAATTTTATAAAATGTCATTCTTAAGAATGTAACA AGATC	
snR45-1	CTTGGAAGGTCATTGGTTTCTTTAAATGAAACCTCCAAAGAAAATCTAACG CGTCTTGGTAAAATATATGTACCGAGTGTTTCGCTTTTTATACC	
snR45-2	GGAGGTTTCATTTAAAGAAACCAATGACCTTCCAAGTTTTTAAAAGAATAC GATGATATTATTTGCGTTTCAAATCGAACAATTCTTCTCGGAGCGATCTGA GG	
snR45-2b	GGAGGTTTCATTTAAAGAAACCAATGACCTTCCAAGTTTTTAAAAGAATAC GATGATATTATTTGCGTTTCAAATCGAACAATTCTTCTCGGAGCGATC	

snR45-3b	GTCCTTGTCATTCTTAAGAATGTAACAAGATCAATGGGTTGCGCAGGAAC CGCTATCTCCATTACTGGTTACGATCGCTCCGAGAAGAATTGTTCGATTTG AAACGC	
snR45-4b	CCCATTGATCTTGTTACATTCTTAAGAATGACAAGGACGCTTTTATAAAATT CTGATTCTTTTTCTTTCATTCTTTGTTGTTTTTGACTTGGGAG	
snR45-3d	CCTTGTCATTCTTAAGAATCATTGTTCCAAAATGGGTTGCGCAGGAACCG CTATCTCCATTAAAACCTCAGATCGCTCCGAGAAGAATTGTTCGATTTG	
snR45-4d	GCAACCCATTTTGGAACAATGATTCTTAAGAATGACAAGGACGCTTTTATA AAATTCTGATTCTTTTTCTTTCATTCTTTTGTTGTTTTTGACTTGGG	
snR45-3f	GCGTCCTTGTCATTCTTAAGAATGTAACAAGATGCGCAGGAACCGCTATC TCCATTAAAACCTCAGATCGCTCCGAGAAGAATTGTTCGATTTG	
snR45-4f	GGTTCCTGCGCATCTTGTTACATTCTTAAGAATGACAAGGACGCTTTTATA AAATTCTGATTCTTTTTCTTTCATTCTTTTGTTGTTGTTTTTGACTTGGG	
snR45-3g	GAATAGGTGGTGAAAAAGGCCACGGCAATGGGTTGCGCAGGAACCGCTA TCTCCATTATCTTACACAACAGATCGCTCCGAGAAGAATTGTTCGATTTG	
snR45-2h	CATTTAAAGAAACCAATGACCTTCCAAGTTTTTAAAAGAATACGATGATATT ATTTGCGTTTCAAATCGAACAATAAATAACTCTAGAGCGATCTGTTG	
snR45-3h	GAATAGGTGGTGAAAAAGGCCACGGCAATGGGTTGCGCAGGAACCGCTA TCTCCATTATCTTACACAACAGATCGCTCTAGAGTTATTTAT	
snR45-4h	CCCATTGCCGTGGCCTTTTTCACCACCTATTCTTAAGAATGACAAGGACG CTTTTATAAAATTCTGATTCTTTTTTTTTCTTTCATTCTTTTGTTGTTTTTGAC	
snR45-5	CTAGTCTACAATTTAAGAACATATAAAAAGCTACTTGTGTACAGATGAGAT GACTACTCCCAAGTCAAAAAACAACAAAAAGAATGAAAGAAA	
probe 33	CGCTGCTCACCAATGG	
probe 20	TGAGAAGGAAATGACGCT	
probe 9	CCCACCTATTCCCTCTTGC	
probe 5	GATTGCTCGAATGCCCAAAG	
probe 4	CGGTTTTAATTGTCCTA	
PE_40_25S	TATCCTGAGGGAAACTTCGG	
PE_34_18S	TAAGGTCTCGTTCGTTATCGC	