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Abstract Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is
widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67
controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect
cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated
efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent
cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin
regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In
contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin
organisation, disrupting heterochromatin compaction and long-range genomic interactions.
Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally,
overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation.
Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises
heterochromatin, thereby controlling gene expression.
DOI: 10.7554/eLife.13722.001

Introduction
The cell proliferation antigen Ki-67 (Ki-67 or Ki67) is constitutively expressed in cycling mammalian
cells (Gerdes et al., 1983). It is therefore widely used as a cell proliferation marker to grade
tumours. Ki-67 is a nuclear DNA-binding protein (MacCallum and Hall, 2000) with two human iso-
forms that have predicted molecular weights of 320kDa and 359kDa (Gerdes et al., 1991). The
domain structure of Ki-67 is represented in Figure 1. All homologues contain an N-terminal Fork-
head-associated (FHA) domain, which can bind both to DNA and to phosphorylated epitopes. The
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most characteristic feature of Ki-67 is the presence of multiple tandem repeats (14 in mice, 16 in

human) containing a conserved motif of unknown function, the ’Ki-67 domain’. Two other conserved

motifs include a Protein Phosphatase 1 (PP1)-binding motif (Booth et al., 2014) and a 31 amino acid

conserved domain (CD) of unknown function, 100% identical between human and mouse, that

includes a 22 amino acid motif conserved in all homologues. Ki-67 homologues also have a weakly

conserved leucine/arginine rich C-terminus which can bind to DNA and, when overexpressed, pro-

motes chromatin compaction (Scholzen et al., 2002; Takagi et al., 1999).
Ki-67 protein levels and localisation vary through the cell cycle. Its maximum expression is found

in G2 phase or during mitosis (Endl and Gerdes, 2000b). In interphase, Ki-67 forms fibre-like struc-

tures in fibrillarin-deficient regions surrounding nucleoli (Verheijen et al., 1989b; Kill, 1996;

Cheutin et al., 2003). Ki-67 also colocalises with satellite DNA (Bridger et al., 1998) and is found in

protein complexes that bind to satellite DNA (Saksouk et al., 2014). It remains associated with

nucleolar organiser regions of acrocentric chromosomes throughout interphase (Bridger et al.,

1998). Ki-67 is a direct substrate of the cyclin-dependent kinase CDK1 (Blethrow et al., 2008) and

is hyperphosphorylated in mitosis. This may regulate its expression and / or localisation (Endl and

Gerdes, 2000a). In HeLa cells, Ki-67 binds tightly to chromatin in interphase, whereas this binding is

weakened in mitosis (Saiwaki et al., 2005) when it associates with condensed chromosomes before

relocating to the chromosome periphery (Verheijen et al., 1989a).
Ki-67 is generally assumed to be required for cell proliferation. An early study found that injection

of antisense oligonucleotides that block Ki-67 expression inhibited cell proliferation (Schluter et al.,

1993). Subsequent studies have shown that unperturbed Ki-67 expression levels are required for

normal proliferation rates in various cell lines (Kausch et al., 2003; Rahmanzadeh et al., 2007;

Zheng et al., 2006; 2009). However, no complete Ki-67 loss of function studies have been reported.

Therefore, it remains unclear what its functions are and whether it is essential for cell proliferation.
The dynamic localisation of Ki-67 has led to suggestions that it could coordinate nucleolar disas-

sembly and reassembly at either side of mitosis (Schmidt et al., 2003). Indeed, Ki-67 is required to

localise nucleolar granular components to mitotic chromosomes, thereby potentially playing a role in

nucleolar segregation between daughter cells (Booth et al., 2014). It has also been reported that

Ki-67 has roles in ribosome biogenesis (Rahmanzadeh et al., 2007), consistent with its nucleolar

localisation and apparent role in cell proliferation.
In this work, we characterise the cellular roles of Ki-67 using knockdown and genetic approaches.

We find that mutant mice with disrupted Ki-67 expression are viable and fertile. Preventing Ki-67

downregulation upon cell cycle exit in vivo does not impede differentiation. Thus, Ki-67 expression

eLife digest Living cells divide in two to produce new cells. In mammals, cell division is strictly
controlled so that only certain groups of cells in the body are actively dividing at any time. However,
some cells may escape these controls so that they divide rapidly and form tumors.

A protein called Ki-67 is only produced in actively dividing cells, where it is located in the nucleus
– the structure that contains most of the cell’s DNA. Researchers often use Ki-67 as a marker to
identify which cells are actively dividing in tissue samples from cancer patients, and previous studies
indicated that Ki-67 is needed for cells to divide. However, the exact role of this protein was not
clear. Before cells can divide they need to make large amounts of new proteins using molecular
machines called ribosomes and it has been suggested that Ki-67 helps to produce ribosomes.

Now, Sobecki et al. used genetic techniques to study the role of Ki-67 in mice. The experiments
show that Ki-67 is not required for cells to divide in the laboratory or to make ribosomes. Instead,
Ki-67 alters the way that DNA is packaged in the nucleus. Loss of Ki-67 from mice cells resulted in
DNA becoming less compact, which in turn altered the activity of genes in those cells.

Sobecki et al. also identified many other proteins that interact with Ki-67, so the next step
following on from this research is to understand how Ki-67 alters DNA packaging at the molecular
level. Another future challenge will be to find out if inhibiting the activity of Ki-67 can hinder the
growth of cancer cells.
DOI: 10.7554/eLife.13722.002
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can be uncoupled from cell proliferation. Instead, we show that Ki-67 is an essential mediator of het-

erochromatin organisation and long-range chromatin interactions, controlling gene expression. As it

is expressed at high levels only in proliferating cells, our results suggest that Ki-67 links heterochro-

matin organisation to cell proliferation.

Figure 1. Comparison of human and mouse Ki-67 structural elements. (A) Top: cartoon of human (long form) and mouse Ki-67 protein highlighting

conserved elements and functional motifs. Domains are indicated by boxes (FHA, forkhead-associated domain; PP1, PP1-binding domain; CD,

conserved domain; D-box: APC/C targeting destruction box motifs; KEN: APC/C-Cdh1 targeting KEN box motifs). Highly conserved regions are

indicated by dotted line with percent of identical amino acids. Bottom: alignment of mouse Ki-67 repeats. (B) APC/C targeting motifs identified in

human (both isoforms) and mouse Ki-67.

DOI: 10.7554/eLife.13722.003
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Results

Mouse development is not affected by genetic up- and downregulation
of Ki-67 expression
Given the tight correlation between Ki-67 expression and cell proliferation, it is often assumed that

Ki-67 is required for cell proliferation and that its downregulation might promote cell cycle exit. We

tested these hypotheses genetically. Ki-67 protein expression is regulated during the cell cycle, and

we speculated that it might be a target for the APC/C-Cdh1 ubiquitin ligase complex. This complex

is active in late mitosis and G1, and triggers degradation of substrates containing D-boxes and KEN

boxes. Human Ki-67 isoforms contain two or three KEN boxes, whereas mouse Ki-67 contains two

D-boxes (Figure 1A,B). Mouse Ki-67 contains an additional sequence, AQRKQPSR at 2680–2687,

Figure 2. Maintenance of Ki-67 expression in quiescent cells in vivo by Cdh1 mutation. (A) Immunofluorescence

analysis of Ki-67 in MEF cells isolated from embryo (E13.5) of Fzr1(+/D);Sox2-Cre and Fzr1(-/D);Sox2-Cre mice.

Scale bar, 25 mm. (B) IHC staining of Ki-67 and BrdU in sagittal sections of embryo cerebellum (E18.5) of Fzr1 (+/D);

Sox2-Cre and Fzr1 (-/D);Sox2-Cre mice. Bars, 200 mm. Bars in zoom, 50 mm.

DOI: 10.7554/eLife.13722.004

The following figure supplement is available for figure 2:

Figure supplement 1. Ki-67 expression is restricted to proliferating cells by APC/C-Cdh1.

DOI: 10.7554/eLife.13722.005

Sobecki et al. eLife 2016;5:e13722. DOI: 10.7554/eLife.13722 4 of 33

Research Article Cell biology

http://dx.doi.org/10.7554/eLife.13722.004
http://dx.doi.org/10.7554/eLife.13722.005
http://dx.doi.org/10.7554/eLife.13722


Figure 3. Mouse development with a mutated Ki-67 gene. (A) Table describing Ki-67 mutant mouse lines resulting from germline transmission of

mutations generated by cytoplasmic injection of TALEN-encoding mRNA into zygotes. (B) Macroscopic appearance of littermate female mice at 10

weeks of age. Genotypes are specified. (C) IHC staining of Ki-67 in sagittal section of intestine from Mki67WT/WT, Mki67WT/2ntD and Mki672ntD/2ntD mice.

(D) Western blots of Ki-67 and cyclin A expression from intestine isolated from Mki67WT/WT, Mki67WT/2ntD and Mki672ntD/2ntD mice. LC, loading control.

(E) Western blot of Ki-67 in MEFs from WT, Mki67WT/2ntD and Mki672ntD/2ntD mice. LC, loading control. (F) Flow cytometry profiles in WT, Mki67WT/2ntD

and Mki672ntD/2ntD MEFs showing EdU incorporation upon a 1 hr pulse and DNA content.

DOI: 10.7554/eLife.13722.006

The following source data and figure supplements are available for figure 3:

Figure supplement 1. Ki-67 mutant mice develop normally.

DOI: 10.7554/eLife.13722.007

Figure 3 continued on next page
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which is highly similar to the A-box, a third APC/C-Cdh1 recognition motif (Littlepage and Ruder-

man, 2002). To see whether Cdh1 regulates Ki-67, we analysed mouse embryo fibroblasts (MEFs)

lacking the Fzr1 gene that encodes Cdh1 (Garcia-Higuera et al., 2008). Asynchronous Fzr1 hetero-

zygous MEFs, that are at different stages of the cell cycle, had variable Ki-67 levels, whereas in the

Fzr1 knockout MEFs Ki-67 was upregulated and more homogeneously expressed (Figure 2A). To

see whether sustained Ki-67 expression in quiescent cells would have a negative impact on cell cycle

arrest in vivo, we analysed Fzr1-knockout mice. Here, Ki-67 was overexpressed and uncoupled from

cells that incorporate BrdU in all tissues examined (Figure 2B, Figure 2—figure supplement 1).

Thus, Ki-67 expression is regulated by APC/C-Cdh1 in mice and its downregulation is not a prerequi-

site for cell cycle exit.
We next investigated the functional consequences of Ki-67 downregulation for normal tissue

development and homeostasis. To disrupt the gene encoding Ki-67, Mki67, in the mouse germline,

we used a TALEN pair targeting the unique ATG start codon. This is predicted to generate null

alleles (Figure 3—figure supplement 1A). After cytoplasmic injection of these TALEN-encoding

mRNAs into zygotes, 10 out of 54 mice had mutations disrupting the coding sequence. We crossed

founder mutant mice, and four gave germline transmission of the mutation. Due to mosaicism, this

resulted in six lines: two lines with mutations eliminating the initiation codon and four lines with dele-

tions which cause frameshifts immediately downstream of the ATG (Figure 3A). From these, we

selected a 2-nucleotide deletion (2ntD) mutant that retains the ATG initiation codon but has a frame-

shift in the next codon (Figure 3—figure supplement 1B), and a 21-nucleotide deletion (21ntD) that

eliminates the ATG (Figure 3—figure supplement 1C). We crossed these mice and, unexpectedly,

obtained homozygous mutants at the expected Mendelian frequency that were indistinguishable

from heterozygous or wild-type (WT) littermates (Figure 3B, Figure 3—figure supplement 1D).

Both deletion mutant lines showed normal growth and were fertile. Sagittal sections from Mki672ntD/

2ntD mice did not reveal any obvious defects in tissue morphology (Figure 3—figure supplement 2).

Since the intestinal epithelium is the most highly proliferative adult mouse tissue, we compared its

morphology between WT and mutant mice. In WT animals, the proliferative crypt compartment was

strongly stained for Ki-67 by immunohistochemistry (IHC), while only minimal levels of Ki-67 were

observed in the differentiated cells on the villus (Figure 3C, top), as expected. In contrast, in the

mutants, proliferating crypt cells showed only residual levels of Ki-67 staining by IHC (Figure 3C,

bottom) or immunofluorescence (Figure 3—figure supplement 3). Immunoblotting of intestinal

Figure 3 continued

Figure supplement 2. Ki-67 mutant mice develop normally.

DOI: 10.7554/eLife.13722.008

Figure supplement 3. Background Ki-67 levels in Ki-67 mutant mice.

DOI: 10.7554/eLife.13722.009

Figure supplement 4. Background Ki-67 levels in Ki-67 mutant mice.

DOI: 10.7554/eLife.13722.010

Figure supplement 5. Ki-67 mRNA levels are not reduced in Ki-67 mutant mice.

DOI: 10.7554/eLife.13722.011

Figure supplement 6. Normal proliferation and differentiation in Ki-67 mutant mice.

DOI: 10.7554/eLife.13722.012

Figure supplement 7. Ki-67 mRNA levels are not reduced in MEFs from Ki-67 mutant mice.

DOI: 10.7554/eLife.13722.013

Figure supplement 8. Generation of Ki-67-mutant NIH-3T3 cells.

DOI: 10.7554/eLife.13722.014

Figure supplement 9. Ki-67-mutant NIH-3T3 cells proliferate normally.

DOI: 10.7554/eLife.13722.015

Figure supplement 10. Basal translation of Ki-67 with a mutated ATG.

DOI: 10.7554/eLife.13722.016

Figure supplement 11. SILAC proteomics analysis of Ki-67 expression with a mutated ATG.

DOI: 10.7554/eLife.13722.017

Figure supplement 11—source data 1. SILAC quantitation of Ki-67 peptides from WT and Mki67-mutant NIH-3T3 cells.

DOI: 10.7554/eLife.13722.018
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epithelium preparations could detect a weak band of similar size to WT Ki-67 (Figure 3D; Figure 3—

figure supplement 4). The signal was, however, reduced by at least 90% in both mutants compared
to WT tissue. Three different Ki-67 antibodies gave similar results. These are all extremely sensitive

as they recognise the highly repeated Ki-67 domain. They should also detect N-terminally truncated
Ki-67 that would result from translation from the ATG at position 433. qRT-PCR analysis showed that

Ki-67 mRNA level was, unexpectedly, increased rather than reduced in the intestinal tissue (Fig-
ure 3—figure supplement 5). In the intestinal epithelium, analysis of Wnt signalling and differentia-

tion of goblet and tuft cells showed no differences between WT and Mki6721ntD/21ntD mice
(Figure 3—figure supplement 6). These results show that high Ki-67 levels and an intact Ki-67 gene

are not required for development or differentiation in vivo.
To see if cells from Ki-67 mutant mice had normal proliferation capacity we isolated embryonic

fibroblasts (MEFs) from day-13 embryos. Homozygous Mki672ntD/2ntDMEFs had at least 90% lower Ki-
67 levels (Figure 3E). We could not confirm by immunoblotting whether or not the protein was full-

length or truncated since SDS-PAGE cannot resolve 15kDa differences between proteins of nearly
400 kDa, and no antibodies are available against the N-terminus of Ki-67. As with intestinal tissue,

the loss of Ki-67 expression was not due to mRNA degradation, as shown by qRT-PCR (Figure 3—
figure supplement 7). Indeed, in the homozygous mutant, the Ki-67 mRNA level was increased to a

level comparable with that of proliferating NIH-3T3 cells. Mutant MEF proliferated comparably to

controls, and flow cytometric assessment of EdU incorporation after a 1 hr EdU pulse showed similar
numbers of replicating cells in Ki-67 WT and mutant cells (Figure 3F).

The low level residual Ki-67 expression in homozygous Ki-67 mutants suggests that TALEN or the
conceptually-related CRISPR approaches may not lead to complete loss of expression, even when
the translation initiation codon has been mutated. To further investigate whether Ki-67 translation

can occur with a mutated initiation codon, we used the same TALEN pair to generate monoclonal
Ki-67 mutant mouse NIH-3T3 cell lines, allowing analyses of translation that are technically impossi-

ble using animal tissues. We also performed the same procedure in the absence of TALENs to iso-

late wild-type clones. We obtained nine mutants with very low Ki-67 expression. Cloning and
sequencing showed that five had biallelic mutations around the ATG codon (Figure 3—figure sup-

plement 8). As in mice, even though Ki-67 was visible by immunofluorescence, Ki-67 was barely
detectable by Western blot in all clones analysed (Figure 3—figure supplement 9A). All clones pro-

liferated efficiently (Figure 3—figure supplement 9B). qRT-PCR showed that mutants did not have
decreased Ki-67 mRNA levels compared to WT NIH-3T3 cells; indeed, like mutant MEFs, clone 14

had a higher level (Figure 3—figure supplement 9C). We selected two clones for further analysis of
Ki-67 translation. Clone 14 had lost the ATG codon in one allele, but had acquired an insertion of 4

nucleotides after the ATG in the second allele, generating the same shifted reading frame as the
Mki672ntD/2ntD mice. Clone 21 had lost the ATG codon in both alleles, thus mimicking the situation

with Mki6721ntD/21ntD mice. qRT-PCR quantification of Ki-67 mRNA from ribosome purifications shows

that in clones 14 and 21 there was no decrease in ribosome association with Ki-67 mRNA; indeed, in
clone 14 it increased, probably due to the higher Ki-67 mRNA level (Figure 3—figure supplement

10). To definitively determine levels of Ki-67 translation in the mutants, we performed SILAC quanti-
tative mass spectrometry from exponentially growing WT or mutant NIH-3T3 cells cultured in light

(L) (WT) or heavy-labelled (H) medium (clones 14 and 21). Chromatin was purified and run on SDS-
PAGE. Peptides were purified from two gel slices, one around the predicted size of full length Ki-67

(>250 kDa; band 1) and one at a smaller size (130k Da-250 kDa, band 2). Ki-67 could not be posi-
tively identified in clones 14 and 21 (Figure 3—figure supplement 11). In peptides from WT cells

(L), 44 peptides derived from Ki-67 were identified by MS/MS. In contrast, in peptides from mutant
cell lines (H), no MS/MS spectra for Ki-67 could be identified in either band. Selecting the ‘re-quan-

tify’ option in MaxQuant (that forces quantitation of identified light peaks against any peaks that

have the expected difference in m/z ratio), the ratios H/L observed for putative Ki-67 peaks were in
the range of most typical contaminants that are only found unlabelled in a SILAC experiment. In

band 1, the median normalised H/L intensity ratio of the 5 corresponding m/z peaks in clone 14 was
0.095 (mean, 0.100, SD, 0.02), and in clone 21 (7 peptides) was 0.191 (mean 0.203, SD 0.05). In band

2, which would result from truncated or degraded Ki-67, there were only 3 corresponding peaks,
with median H/L ratios for clones 14 and 21 of 0.358 (mean, 0.402, SD, 0.30) and 0.500 (mean,

0.454, SD 0.33) respectively. Taken together, these results show that if Ki67 is translated in the
mutant cell lines, it is at trace levels that are not positively identifiable by state-of-the-art mass
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spectrometry. At best, translation can occur from the mutated Ki-67 gene with an estimated 10%

efficiency. The product is most likely an N-terminally truncated protein lacking the conserved FHA-

domain, arising from a downstream in-frame ATG.

Cells lacking Ki-67 proliferate efficiently
Given the above results, it remained possible that very low levels of Ki-67 remain after Mki67 gene

mutation and that they might suffice to sustain cell proliferation. To rule out this possibility we

devised a ’double TALEN’ strategy to completely eliminate Ki-67 expression. We designed and syn-

thesised an additional TALEN pair targeting a sequence downstream of the translation stop codon.

We co-transfected the ATG TALEN pair and the Stop TALEN pair with a GFP knock-in construct con-

taining homology arms (Figure 4A). We thus isolated several monoclonal cell lines in which Ki-67

Figure 4. Cell proliferation without Ki-67. (A) Schematic representation of strategy for TALEN-mediated generation of Mki67 null allele. (B) qRT-PCR
analysis of Ki-67 mRNA levels in NIH-3T3 WT clone W4 and Ki-67-negative 60, 65, 99 clones. (C) Top: Western blot of Ki-67 and Cyclin A in NIH-3T3 WT

clone W4 and Ki-67-negative mutant clones 60, 65, 99; LC, loading control; below, Ki-67 immunofluorescence; bar, 10 mm. (D) Left, growth curves of WT

and Ki-67 null cell lines 60, 65 and 99; right, cell cycle distribution analysed by flow cytometry. (E) Cell cycle length of WT clone W4 and Ki-67 null clones

60 and 65 as determined by time-lapse videomicroscopy. (F) Cells of clone 65 show altered chromosomal periphery in mitosis. The Ki-67 staining is

deliberately overexposed to demonstrate absence of detectable Ki-67 in clone 65, even in metaphase. Bar, 5 mm.

DOI: 10.7554/eLife.13722.019

The following figure supplement is available for figure 4:

Figure supplement 1. Generation of NIH-3T3 cells lacking Ki-67.

DOI: 10.7554/eLife.13722.020
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mRNA was essentially eliminated (Figure 4B), indicating efficient nonsense-mediated decay (NMD).
These cell lines had no residual Ki-67 protein expression (Figure 4C), confirming that the basal

immunostaining seen in clones 14 and 21 indeed reflected trace level Ki-67 expression. We used
Southern blotting of genomic DNA to characterise these alleles. The 3’ end of the Mki67 gene
remained intact in all clones, while the 5’ end of mutants showed a rearrangement consistent with a
tandem insertion of multiple copies of the knockin construct upstream of the Mki67 ORF (Figure 4—

figure supplement 1). Thus, the Mki67 gene was severely disrupted but not deleted. These Ki-67-
negative cells proliferated normally. Growth curves and DNA content profiles were indistinguishable
from controls (Figure 4D). Time-lapse videomicroscopy showed that although individual clones had
slightly different cell cycle lengths, cell division time was not significantly different between WT and
mutant clones (Figure 4E). We noticed that mitotic cells of one of the clones lacking Ki-67 had an

altered chromosomal periphery (Figure 4F). Such a phenotype has previously been reported in Ki-67
knockdown HeLa cells (Booth et al., 2014). Nevertheless, these cells could divide efficiently.

Next, we tested whether Mki67 mutant clones had altered kinetics of cell cycle exit or entry. To
do this, we quantified cells that could replicate by measuring 5-ethynyl-2-deoxyuridine (EdU) incor-
poration into DNA. We found that 42% of WT Mki67 cells could still incorporate some level of EdU
even after 72 hr with 0.1% serum, but only 13% or 28% of mutant clones 60 or 65, respectively,
could do so (Figure 5A). This suggested that Mki67 disruption rendered cells slightly more sensitive

to serum starvation. Upon addition of serum to quiescent cells, WT and Mki67 mutants entered the
cell cycle with similar kinetics (Figure 5A). Ki-67 remained completely undetectable in mutants
(Figure 5B).

As Ki-67 is frequently used to assess proliferation in human cancer cells, we tested whether
human cells lacking Ki-67 can proliferate. We generated stable human cell lines with inducible or
constitutive expression of shRNA that silenced Ki-67 or a non-silencing control (Figure 5—figure
supplement 1A, 2A). We used the non-transformed human fibroblast cell line BJ-hTERT, and two

commonly used cancer cell lines, HeLa and U2OS, which are of epithelial and mesenchymal origin,
respectively. In BJ-hTERT, inducing shRNA expression largely prevented Ki-67 expression but had
no detectable effect on the kinetics of entry into the cell cycle, as judged by expression of cell cycle
regulators and EdU incorporation (Figure 5—figure supplement 1B). Further reducing residual Ki-

67 levels with siRNA also did not affect cell proliferation (Figure 5—figure supplement 1C). Simi-
larly, constitutive knockdown of Ki-67 in stable shRNA-expressing HeLa or U2OS cells had no effect
on cell cycle distribution nor on the expression of cell cycle regulators (Figure 5—figure supplement
2B). Analysing single cells by immunofluorescence showed that knockdown U2OS cells with unde-

tectable Ki-67 expression incorporated EdU in a similar manner to control cells, demonstrating effi-
cient DNA synthesis (Figure 5—figure supplement 2C).

Taken together, these results show that although Ki-67 elimination might have minor effects on
cell cycle exit and mitosis, mammalian cells can nevertheless proliferate efficiently in the absence of
detectable Ki-67.

Ki-67 interacts with proteins involved in nucleolar processes and
chromatin regulation
To investigate possible molecular functions of Ki-67, we identified interacting proteins. To do this,
we expressed FLAG-tagged versions of full-length human Ki-67 or an unrelated protein (TRIM39) in
U2OS cells, and pulled down proteins from nuclear extracts with anti-FLAG antibody (Figure 6—fig-

ure supplement 1). These were analysed by label-free mass spectrometry. This approach identified
406 proteins specific to the Ki-67 pulldown (Figure 6—figure supplement 2). These included known
Ki-67 partners: CDK1, an established Ki-67 kinase (Blethrow et al., 2008), nucleolar protein NIFK
(Takagi et al., 2001), protein phosphatase 1 (Booth et al., 2014), and five subunits (HCFC1, HSPA8,

MATRIN3, RBBP5 and WDR5) of a histone methylase complex that interacts with the nuclear recep-
tor coregulator NRC (also known as NCOA6; Garapaty et al., 2009). Gene ontology and STRING
analysis classified the Ki-67 interactors as being enriched in two general processes: chromatin regula-
tion and ribosomal biogenesis (Figure 6, Figure 6—figure supplement 2). Specifically, interactors

could be subdivided into groups involved in chromatin modification and transcription, ribosomal
subunit biogenesis, pre-rRNA processing, protein translation, and splicing. These interactions sug-
gested that Ki-67 might be involved not only in ribosomal biogenesis, as previously suggested
(Rahmanzadeh et al., 2007), but also in regulating chromatin. Among chromatin regulators
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Figure 5. Cells lacking Ki-67 enter the cell cycle efficiently. (A) Top, re-entry of cell cycle in NIH-3T3 WT clone W4

and Ki-67-negative mutant clones 60 and 65 after serum starvation-induced cell cycle arrest. Progression of cell

cycle entry analysed by FACS using EdU staining. Bottom, quantification of cell cycle phases in this experiment. (B)
Western blot analysis of Ki-67 (upper panel) and cyclin A2 (lower panel) upon cell cycle entry. LC, loading control.

DOI: 10.7554/eLife.13722.021

The following figure supplements are available for figure 5:

Figure supplement 1. Cells lacking Ki-67 proliferate efficiently.

DOI: 10.7554/eLife.13722.022

Figure 5 continued on next page
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interacting with Ki-67, we found the NRC-interacting methylase complex; KMT2D, ASH2L and

SUZ12 proteins which are components of MLL and PRC2/EED-EZH1 complexes which regulate his-

tone H3 methylation (Patel et al., 2009; Pasini et al., 2004); SETD1A, HCFC1, HDAC2, YY1 and

RCOR1, which are components of H3K4 demethylase complexes and co-repressors; and UHRF1,

which binds to H3K9me3-modified chromatin and is involved in both maintaining DNA methylation

and heterochromatin formation (Bostick et al., 2007; Guetg et al., 2010; Rottach et al., 2010). Ki-

67 also interacts with TIP5, the major component of the nucleolar remodelling complex (NoRC)

which is required to establish and maintain perinucleolar heterochromatic rDNA, as well as NoRC-

interacting proteins TTF1 and DNM3.

Figure 5 continued

Figure supplement 2. Cells lacking Ki-67 proliferate efficiently.

DOI: 10.7554/eLife.13722.023

Figure 6. Ki-67 interacts with proteins involved in nucleolar processes and chromatin. Simplified STRING analysis

reveals network interactions between proteins associating with Ki-67. The full network is shown in Figure 6—

figure supplement 2; data is provided in Figure 6—source data 1.

DOI: 10.7554/eLife.13722.024

The following source data and figure supplements are available for figure 6:

Source data 1. Ki-67 interacting proteome.

DOI: 10.7554/eLife.13722.025

Figure supplement 1. The Ki-67 interactome.

DOI: 10.7554/eLife.13722.026

Figure supplement 2. Ki-67 interacts with proteins involved in nucleolar processes and chromatin.

DOI: 10.7554/eLife.13722.027
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Ki-67 is required for perichromosomal region formation during
nucleologenesis
We first focused on a possible role of Ki-67 in ribosome biogenesis, a process linked to nucleolar

assembly and structure, and which is required for cell proliferation (Hernandez-Verdun et al.,

2010). One of the candidate Ki-67 interactors involved in rRNA biogenesis was the Pescadillo homo-

logue PES1, which participates in pre-rRNA processing and is localised in the nucleolar granular

components (GC) (Rohrmoser et al., 2007; Tafforeau et al., 2013). During interphase, we found

that Ki-67 localised at the cortical periphery of the GC, visualised using PES1. Ki-67 formed a bound-

ary between the perinucleolar heterochromatin (clearly visible as a ’ring’ in the DAPI staining) and

the GC (Figure 7A, Figure 7—figure supplement 1). Whereas nucleolar disruption using Actinomy-

cin D or the CDK inhibitors DRB or Roscovitine caused nuclear relocalisation of Ki-67 and GC pro-

teins (Figure 7—figure supplement 2), depletion of Ki-67 did not affect the gross structure of the

nucleolus, as determined by PES1 staining (Figure 7A, Figure 7—figure supplement 3).
During mitosis, the nucleolus undergoes a dramatic cycle of disassembly and reassembly (Hernan-

dez-Verdun et al., 2010). Briefly, soon after the onset of mitosis, when transcription is shut down,

the nucleolus is rapidly disassembled; it then slowly reforms through the formation of intermediary

organelles that undergo consecutive transformations, identifying three distinct organelle stages, and

the process is complete by telophase. The first of these three intermediary organelles is a sheath of

nucleolar proteins that forms around the surface of the mitotic chromosomes, the so-called ’peri-

chromosomal region’ or PR. To date, not much is known about the trans-acting factors involved in

PR formation. Remarkably, we found that Ki-67 depletion totally disrupted PR formation and PES1

no longer associated with the chromosome surface (Figure 7B). A similar finding, using other nucleo-

lar proteins than PES1 as PR markers, was recently reported (Booth et al., 2014).
Having established that Ki-67 controls nucleolar assembly during mitosis, we wondered whether

Ki-67 is required for pre-rRNA processing. We found that Ki-67 knocked down U2OS cells, that have

essentially undetectable Ki-67, could still incorporate normal levels of 5-ethynyl uridine (EU) in nucle-

olar RNA. This suggests that rRNA transcription is not altered (Figure 8—figure supplement 1). We

next looked at pre-rRNA processing pathways by Northern blotting of precursor rRNAs or inter-

mediates (Figure 8—figure supplement 2). This showed that silencing Ki-67 expression by shRNA

or siRNA had no significant effect on pre-rRNA processing in four different cancer cell lines

(Figure 8A). We did, however, notice a marginal but reproducible increase in the level of the 47S

precursor rRNA, indicating a mild delay in the early nucleolar pre-rRNA cleavage steps (Figure 8B).

The tumour suppressor TP53 (p53) is a sensor of nucleolar stress resulting from defective ribosome

biogenesis, and it represses ribosomal gene transcription (Bursac et al., 2014). Impairment of early

pre-rRNA cleavage steps upon depletion of Ki-67 was independent of p53 (Figure 8B). Taken

together, these results demonstrate that while Ki-67 is dispensable for efficient pre-rRNA process-

ing, it is essential for the formation of the perichromosomal layer during nucleologenesis.

Depletion of Ki-67 affects gene transcription
These results showed that in spite of its role in early steps of nucleologenesis, Ki-67 is not essential

for expression of rRNA genes. We next asked whether it is involved in control of mRNA expression.

We performed genome-wide transcriptome analysis from U2OS and HeLa cells expressing non-

silencing control or Ki-67 shRNA, using Agilent gene-microarrays. Ki-67 knockdown led to downre-

gulation (corrected p value <0.02, Fold-change >1.5) of over 200 genes (Figure 8C). Expression of

cell cycle regulatory genes was not affected. Additionally, Ki-67 silencing caused upregulation (cor-

rected p value <0.02, Fold-change >1.5) of a wide variety of genes involved in neural, testis and car-

diovascular system development and differentiation (Figure 8C). These were strikingly enriched in

genes encoding zinc-finger proteins and olfactory receptors, two gene families that are highly

enriched in nucleolar associated-domains (NADs) of perinucleolar heterochromatin

(PNHC) (Németh et al., 2010). This suggested that effects of Ki-67 downregulation on gene expres-

sion might be due to an altered chromatin state, in particular of PNHC.

Ki-67 promotes heterochromatin organisation
In support of a potential role for Ki-67 in heterochromatin organisation, we found that Ki-67 knock-

down in HeLa and U2OS cells caused a marked reduction in perinucleolar DAPI staining (Figure 7A,
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Figure 7. Ki-67 localises PES1 to mitotic chromosomes. (A) Analysis of the interphase localisation of PES1 and Ki-

67 proteins by immunofluorescence in HeLa cells 72 hr after transfection with control siRNA (scramble; Scr) or Ki-

67 RNAi. Right, line scans showing the distribution of fluorescence signals within indicated nucleoli (dashed line).

Images were captured in confocal mode with a spinning-disk microscope. Bar, 5 mm. (B) Analysis of the mitotic

localisation of PES1 and Ki-67 proteins by immunofluorescence in HeLa cells 72 hr after transfection with control

siRNA (scramble; Scr) or Ki-67 RNAi. Bar, 5 mm.

DOI: 10.7554/eLife.13722.028

The following figure supplements are available for figure 7:

Figure supplement 1. Ki-67 is a nucleolar protein localizing in the cortical side of the GC.

DOI: 10.7554/eLife.13722.029

Figure supplement 2. Ki-67 follows GC components upon drug-induced nucleolar disruption.

DOI: 10.7554/eLife.13722.030

Figure supplement 3. Depletion of Ki-67 does not affect overall nucleolar structure.

DOI: 10.7554/eLife.13722.031
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Figure 8. Ki-67 is not required for rRNA biogenesis but controls gene transcription. (A) Northern-blot analysis of total RNA extracted from HeLa and

U2OS cells constitutively expressing shRNA against Ki-67; and HeLa, U2OS, HCT-116 and HCT-116 TP53 (-/-) depleted of Ki-67 by siRNA for 72 hr in

two biological replicates (#1 and #2) or with scrambled siRNA control (Scr). Pre-rRNA intermediates were analysed by probing with different primers

located in the different spacers of the 47S sequence (5’ETS-green; ITS1-blue; ITS2-purple). (B) Quantification of 47S rRNA precursor in HeLa, HCT-116

and HCT-116 TP53 (-/-) depleted of Ki-67 by siRNA for 72 hr in three biological replicates (n=1–3). (C) U2OS cells (left) or HeLa cells (right) show

transcriptome profile differences (fold change >1.5; corrected p-value <0.02) between asynchronous cells constitutively expressing control (CTRL) or Ki-

67 shRNA. Heat-maps present the expression levels of differentially expressed genes between biological replicates (1,2,3) and technical replicates (3,

3*). Data is provided in Figure 8—source data 1 and 2.

DOI: 10.7554/eLife.13722.032

The following source data and figure supplements are available for figure 8:

Source data 1. Ki-67-dependent transcriptome in U2OS cells.

DOI: 10.7554/eLife.13722.033

Source data 2. Ki-67-dependent transcriptome in HeLa cells.

DOI: 10.7554/eLife.13722.034

Figure supplement 1. Ki-67 depletion does not hinder rRNA transcription.

DOI: 10.7554/eLife.13722.035

Figure supplement 2. Human pre-rRNA processing pathway involves two major pathways.

DOI: 10.7554/eLife.13722.036
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Figure 9. Ki-67 promotes heterochromatin interactions. (A) DAPI staining in control and stable Ki-67-knockdown U2OS cells. (B) HeLa cells stably

expressing GFP-H2B and mCherry-H2B, depleted using Ki-67 or non-targeting (CTRL) siRNA. Left, FRET efficiency (cross shows mean value) **

Different, p<0.01. FRET efficiency and spatial distribution shown by a pseudocolour scale of FRET (%) values from 0 to 25%. Bars, 10 mm. (C) Left,
representative HeLaH2B-2FP nuclei showing spatial distribution of FRET efficiency. Arrowheads show different chromatin compaction states (high FRET,

red; intermediate, green; low, blue), Bars, 2 mm. Right, mean FRET distribution curves from siRNA control (blue curve, n=8) and siRNA Ki-67 (red curve,

n=11) nuclei. (D) Relative fraction of the three FRET efficiency populations (blue (low), FRET efficiency ! 8%; green (medium), 8–15%; and red (high), 15–

25%) in siRNA control and siRNA Ki-67 nuclei. Error bars indicate SD. (E) Immunofluorescence of CENP-A localisation in control and stable Ki-67

knockdown HeLa (left) and U2OS (right) cells. Nucleolar localisation (white arrows). Nucleolin was used as nucleolar marker. Bar, 10 mm. Below:

quantification in different cells of numbers of CENP-A spots not associated with the nucleolus.

DOI: 10.7554/eLife.13722.037

Figure 9 continued on next page
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9A). We thus hypothesised that Ki-67 might be required for heterochromatin compaction. To

directly assess chromatin compaction in living cells, we used a Förster Resonance Energy Transfer-

Fluorescence Lifetime Imaging Microscopy (FRET-FLIM)-based assay. In this system, HeLa cells stably
co-express versions of histone H2B labelled with eGFP and mCherry. Inter-nucleosomal interactions

between H2B-eGFP and H2B-mCherry generates FRET, whose efficiency depends on the distance

between nucleosomes (Llères et al., 2009). We depleted Ki-67 by siRNA and studied the effects on

FRET efficiency in interphase cells (Figure 9—figure supplement 1). As expected (Llères et al.,

2009), a heterogeneous FRET efficiency map was observed throughout control siRNA nuclei, reflect-
ing different chromatin compaction states (Figure 9B). Upon Ki-67 depletion, the mean FRET per-

centage decreased, reflecting a reduction in total chromatin compaction (Figure 9B). The highest

FRET populations, including heterochromatin regions at the nuclear periphery and around nucleoli,

were largely eliminated upon Ki-67 depletion, with a few remaining condensed foci predominantly

located at the nuclear periphery (Figure 9C,D). In contrast, a population of less compact chromatin
increased.

Reduced compaction of heterochromatin implies disruption of short-range interactions of chro-
matin. To determine whether Ki-67 knockdown also affects long range interactions, we assessed

interactions between perinucleolar and pericentromeric heterochromatin. We stained for the centro-

meric histone variant CENP-A to determine the localisation of centromeric DNA. In HeLa and U2OS

cells, CENP-A showed a non-random nuclear localisation and clustered around nucleoli (Figure 9E,
arrowheads), confirming that CENP-A can be used as a surrogate marker for adjacent pericentro-

meric DNA. Consistent with our hypothesis, this interaction was disrupted upon Ki-67 knockdown,

and the CENP-A signal was no longer grouped around nucleoli but dispersed throughout the

nucleus (Figure 9E). These results imply that Ki-67 mediates interaction between different regions in
the genome that are normally packaged into heterochromatin, and could potentially maintain silenc-

ing of genes by recruiting them to constitutive heterochromatin.
Constitutive heterochromatin, including PNHC, is characterised by histone post-translational

modifications H3K9me3 and H4K20me3. We asked whether they were affected by downregulation

of Ki-67. Stable shRNA-mediated Ki-67 knockdown in HeLa, U2OS and inducible knockdown in BJ-

hTERT fibroblasts caused a visible reduction in nucleolar staining of H3K9me3 and H4K20me3 (Fig-
ure 10—figure supplements 1–3). This mark was relocalised either to foci in proximity to the nucle-

olus or a punctate pattern dispersed throughout the nucleus. In mouse cells, where pericentromeric

heterochromatin is prominent, H3K9me3 staining colocalised with DAPI-dense chromocentres, but

TALEN-ablation of Mki67 resulted in general nuclear punctate H3K9me3 that was excluded from

nucleoli (Figure 10A,B). Western blotting revealed that Ki-67 depletion did not affect the overall lev-
els of these chromatin modifications (Figure 10—figure supplement 4). We also analysed the local-

isation of heterochromatin protein 1 (HP1), which binds to chromatin containing H3K9me3.

Immunofluoresence showed that, surprisingly, despite the loss of the intense H3K9me3 staining

regions in the Mki67 mutant cells, all three HP1 isoforms maintained their localisation at DAPI-dense

regions (Figure 10—figure supplement 5). Next, we determined whether heterochromatic histone
marks were reduced on specific DNA sequences, or whether they were retained but the sequences

themselves were delocalised. To do this we examined co-localisation of H3K9me3 with mouse major

satellite DNA, by combining immunofluorescence with fluorescent in situ hybridisation (FISH). In con-

trol cells, major satellite DNA, DAPI-dense regions and H3K9me3 largely colocalised (Figure 10C).

In cells lacking Ki-67, major satellite DNA was still present at regions of compacted DNA, despite
the loss of H3K9me3 at these regions (Figure 10C). Taken together, these results suggest that Ki-67

is required for maintaining heterochromatic histone marks at genomic regions that are organised

into heterochromatin.
These results suggest that Ki-67 is required for heterochromatin organisation. To see whether Ki-

67 is sufficient to promote heterochromatin formation, we cloned a full-length cDNA encoding
human Ki-67, that we fused to the eGFP gene, and transfected it into U2OS cells. There was a strong

Figure 9 continued

The following figure supplement is available for figure 9:

Figure supplement 1. Knockdown of Ki-67 in H2B FRET cell line.

DOI: 10.7554/eLife.13722.038
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correlation between cells with higher levels of exogenous Ki-67 and appearance of DAPI-dense foci

resembling ectopic heterochromatin, marked by H3K9me3 and HP1 (Figure 11A). Cells showing this

phenotype were negative for cyclin A staining, suggesting that they were unable to enter S-phase,

whereas lower expression did not prevent cyclin A accumulation (Figure 11B). They were also nega-

tive for histone H3 Ser-10 phosphorylation, a mitotic marker (Figure 11—figure supplement 1). If

Figure 10. Ki-67 controls heterochromatin organisation. (A) Top, immunofluorescence analysis of H3K9me3 in

mouse NIH-3T3 WT and Mki67 TALEN mutant clones 60 and 65. Bars, 5 mm. Below: graphs showing quantification

of pixel intensity scans for H3K9me3. (B) Quantification of H3K9Me3 patterns in WT and Ki-67 mutant clones. (C)
Immunofluorescence of H3K9Me3, FISH of major satellite DNA and DAPI staining in WT W4 and Ki-67 mutant

clone 60. Bar, 10 mm.

DOI: 10.7554/eLife.13722.039

The following figure supplements are available for figure 10:

Figure supplement 1. Heterochromatic histone mark localisation requires Ki-67.

DOI: 10.7554/eLife.13722.040

Figure supplement 2. Heterochromatic histone mark localisation requires Ki-67.

DOI: 10.7554/eLife.13722.041

Figure supplement 3. Heterochromatic histone mark localisation requires Ki-67.

DOI: 10.7554/eLife.13722.042

Figure supplement 4. Overall heterochromatic histone mark levels do not change upon Ki-67 knockdown.

DOI: 10.7554/eLife.13722.043

Figure supplement 5. HP1 localises normally to chromocentres in Ki-67 mutant cells.

DOI: 10.7554/eLife.13722.044
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controlling heterochromatin organisation is a major function of Ki-67, it is likely to be conserved in

more distantly related Ki-67 homologues. In a proteomics-based screen for proteins associated with

replicating chromatin in egg extracts, we identified a putative Xenopus Ki-67 homologue (Fig-

ure 11—figure supplement 2). To assess whether Xenopus and human Ki-67 are functionally con-

served, we cloned and HA-tagged full-length Xenopus Ki-67 and expressed it in U2OS cells.

Whereas in interphase, exogenous Xenopus Ki-67 is present ubiquitously on chromatin, it colocalises

Figure 11. Overexpression of Ki-67 induces ectopic heterochromatin. (A) Overexpression of full length Ki-67 N-terminal fusion with eGFP in U2OS cells

induces ectopic heterochromatin, as visualised by DAPI staining (middle) and immunofluorescence of H3K9Me3 (left) or HP1b (right). Eight

representative cells that have different levels of Ki-67 expression, as determined by eGFP fluorescence intensity, are shown. Bar, 10 mm. (B) U2OS cells

expressing high levels of exogenous eGFP-Ki-67 and showing ectopic chromatin condensation are negative for cyclin A staining by

immunofluorescence. (C) Left: Immunofluorescence analysis of the localisation of endogenous human and ectopically expressed Xenopus Ki-67 in U2OS

cells, showing colocalisation in metaphase at the perichromosomal region. Right: DNA condensation caused by high overexpression of Xenopus Ki-67

in U2OS cells. Bars, 10 mm.

DOI: 10.7554/eLife.13722.045

The following figure supplements are available for figure 11:

Figure supplement 1. Overexpression of Ki-67 induces ectopic heterochromatin.

DOI: 10.7554/eLife.13722.046

Figure supplement 2. A Xenopus Ki-67 homologue (A) Chromatin proteomics in replicating Xenopus egg extracts.

DOI: 10.7554/eLife.13722.047
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with endogenous Ki-67 in mitosis at the perichromosomal region (Figure 11C). Overexpression of
Xenopus Ki-67, like human Ki-67, caused extreme chromatin compaction (Figure 11C). We conclude
that controlling heterochromatin is a conserved essential function of Ki-67.

Discussion
Ki-67 has long been assumed to be essential for cell proliferation (Schluter et al., 1993;
Kausch et al., 2003; Starborg et al., 1996; Rahmanzadeh et al., 2007; Zheng et al., 2006;
2009). Using various genetic and knockdown approaches, we found no evidence for this in any cell
type we tested: HeLa, U2OS, BJ-hTERT and NIH-3T3 fibroblasts. Our data show that Ki-67 expres-
sion can be uncoupled from cell proliferation in both directions. Indeed, not only can cells lacking Ki-
67 proliferate efficiently, conversely, interfering with Ki-67 downregulation by disrupting the Cdh1
gene did not prevent cell cycle exit in vivo. It remains possible that certain cell lines are more sensi-
tive to inhibition of Ki-67 expression, eg cancer cell lines of bladder (Kausch et al., 2003) or renal
(Zheng et al., 2006; 2009) origins. Alternatively, off-target effects of previous antisense or RNAi
approaches might have contributed to the cell proliferation defects observed in previous studies, as
none of them employed restoration controls using silencing-insensitive constructs. Such rescue
experiments are virtually unfeasible given the large size of Ki-67, the targeting of silencing oligonu-
cleotides to the repeated domains, and the fact that Ki-67 overexpression induces ectopic hetero-
chromatin. Several other studies used different approaches. In one, microinjection of an anti-Ki-67
antibody in 3T3 cells did not cause an abolition of cell division (Starborg et al., 1996). Instead, there
was a modest reduction, from 80% to 64%, of dividing cells over a 36-hr period. Another study used
chromophore-mediated light inactivation of Ki-67 after injecting chromophore-labelled Ki-67 anti-
bodies, and found an inhibition of ribosomal RNA synthesis (Rahmanzadeh et al., 2007). However,
such an approach might cause non-specific collateral damage to nucleolar processes where Ki-67 is
localised.

We found that rather than promoting cell proliferation, the role of Ki-67 is to organise hetero-
chromatin. We showed that Ki-67 is required for the maintenance of a high level of compaction typi-
cal of heterochromatin, and mediates long-range interactions between different regions of the
genome that are packaged into heterochromatin. We speculate that heterochromatin compaction
relies on local interactions that depend on Ki-67. Cells lacking Ki-67 show altered gene expression
profiles upon long-term Ki-67 silencing, with a striking correlation between upregulation of genes
that normally are physically associated with perinucleolar heterochromatin (Németh et al., 2010). To
determine possible mechanisms of action of Ki-67, we comprehensively identified its interacting
partners. We thus found at least seventeen proteins that are involved in histone methylation com-
plexes or are interactors of methylated chromatin required for heterochromatin maintenance. This
suggests that Ki67 might target these proteins to their genomic sites to promote heterochromatin
formation. Consistent with this hypothesis, Ki-67 downregulation led to reduction of H3K9me3 and
H4K20me3 at heterochromatin, while Ki-67 overexpression caused appearance of ectopic hetero-
chromatic foci enriched in these methylation marks. Unexpectedly, Ki-67 downregulation did not
prevent association of HP1 isoforms with heterochromatin. Possibly, low levels of H3K9me3 or
H4K20me3 persist and are sufficient for recruitment of HP1, or alternative mechanisms exist to local-
ise HP1 to chromatin. The former hypothesis would be consistent with the observation that loss of
the Suv39H methyltransferases that are responsible for H3K9me3 and H4K20me3 abrogates HP1
recruitment to heterochromatin in mice, whose late embryonic growth and survival is impaired
(Peters et al., 2001). Nevertheless, evidence for the latter possibility has been provided by a study
in C.elegans, in which genome-wide distribution of HP1 binding, as assessed by ChIP-seq, was con-
served in animals lacking H3K9 di- and trimethylation (Garrigues et al., 2015).

Given the requirement for Ki-67 expression in organising heterochromatin, it is perhaps surprising
that mouse development is not affected by Ki-67 downregulation. This once again highlights the
robustness of biological systems. However, to determine whether mouse development can occur
normally in the complete absence of Ki-67 will require a gene deletion rather than a gene disruption
mediated by genome-editing, as we found that even deletion of the translation initiation ATG using
TALENs did not completely abolish Ki-67 expression. The eight subsequent ATG codons are out of
frame, and the next in-frame ATG is 433 bp downstream. Translation from any frameshifted ATG will
lead to a premature stop codon within 65 nucleotides. Although NMD of the mRNA did not occur,
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translation was strongly reduced. This is probably due to the presence of many out-of-frame ATG
codons before the next in-frame ATG codon, as well as the distance from the 5’ end of the mRNA. It
is likely that the residual Ki-67 in proliferating cells occurred from the next in-frame ATG, thus elimi-
nating the most highly conserved domain of Ki-67, the Forkhead-associated (FHA) domain. However,
the unexpected translation in the mutants suggests that care should be taken to examine possible
low level expression of proteins after mutating start sites using genome editing approaches.

Since Ki-67 is degraded upon cell cycle exit, we speculate that this may alter chromatin structure.
For example, Ki-67 degradation might be involved in heterochromatin rearrangements observed
during senescence onset. Facultative heterochromatic foci, that characterise some senescent cells
(Narita et al., 2003; 2006) are not a consistent feature of senescence in all cell types. In contrast,
large-scale satellite heterochromatin decondensation is an early step in senescence in all cells stud-
ied and it precedes loss of H3K9me3 (Swanson et al., 2013). As Ki-67 is required for heterochroma-
tin compaction, its degradation may be involved in the heterochromatin decompaction occurring
upon senescence onset. Heterochromatin reorganisation caused by Ki-67 downregulation does not
interfere with cell cycle progression or cell proliferation, but likely contributes to remodelling of
gene expression. Heterochromatin is also less compact in highly proliferative pluripotent stem cells,
suggesting that heterochromatin organisation is critical for determining transcriptional responses
(Fussner et al., 2011). Ki-67 overexpression, which led to pronounced chromatin condensation,
appeared to arrest the cell cycle in G1, implying that controlled Ki-67 degradation is required to
allow unperturbed progression through the cell cycle.

The nucleolus is a potent cancer biomarker (Derenzini et al., 2009), and a recently demonstrated
target in cancer therapy. Inhibitors of nucleolar functions have indeed been shown to selectively kill
cancer cells, leaving non-cancerous cells intact (Bywater et al., 2012; Peltonen et al., 2014). It is
therefore critical to understand how the nucleolus forms during mitosis. An important step in nucleo-
lar assembly is the formation of a sheath of nucleolar proteins around the chromosome surface on
the metaphase plate. This so-called perichromosomal layer has been suggested to play roles in chro-
mosome protection, in the faithful partitioning of nucleolar proteins between daughter cells, and in
the segregation of opportunistic passenger proteins. Whether the PR performs any of these func-
tions or has other, unidentified, roles will be a promising field for future studies. In this study, we
have identified Ki-67 as one of the first trans-acting factors involved in PR formation during nucleolo-
genesis, corroborating a recent report (Booth et al., 2014).

In conclusion, our data reveal a novel concept whereby heterochromatin organisation is linked to
cell proliferation by Ki-67. As heterochromatin organisation is often compromised in cancer cells
(Carone and Lawrence, 2013) and Ki-67 expression is widely used in clinical assessments in cancer,
these data provide a rationale for further investigation of the functional consequences of Ki-67
expression in tumour samples. Importantly, our data suggest that Ki-67 is likely to modulate tran-
scription in cancer cells.

Materials and methods

Ethics
All animal experiments were performed in accordance with international ethics standards and were
subjected to approval by the Animal Experimentation Ethics Committee of Languedoc Roussillon.

Cell lines
Normal human diploid foreskin fibroblasts (HDF) were provided by Jacques Piette (CRBM, Montpel-
lier), the hTERT-immortalized foreskin fibroblast cell line (BJ hTERT) was provided by Jean Marc
Lemaitre (IRB, Montpellier). U2OS, HeLa, NIH3T3 mouse fibroblasts were obtained from the Ameri-
can Type Culture Collection. They were not authenticated but were mycoplasma-free (tested
weekly). U2OS, HeLa and NIH 3T3 were grown in Dulbecco modified Eagle medium (DMEM - high
glucose, pyruvate, GlutaMAX – LifeTechnologies, ThermoFisher Scientific, Paris, France) supple-
mented with 10% foetal bovine serum (Sigma-Aldrich, Lyon, France or HyClone, GE Healthcare,
Paris, France). BJ hTERT were grown in DMEM supplemented with 10% foetal calf serum (Sigma-
Aldrich) and 2 mM L-glutamine. Apart from murine embryo fibroblasts (MEFs), cells were grown

under standard conditions at 37˚C in a humidified incubator containing 5% CO2. MEFs were grown
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in DMEM supplemented with 10% fetal bovine serum and 1% Penicillin/Streptomycin at 37˚C in an

incubator containing 3% O2 and 5% CO2.

Cell synchronisation
G0 block
HDF, BJ hTERT and NIH-3T3 cell lines at 20% confluency were washed once with PBS and incubated

with medium supplemented with 0.1% FBS for 72 hr. Cells were stimulated to enter the cell cycle by

adding fresh medium with 10% FBS. Onset of S phase was observed at 16 hr after restimulation by

EdU incorporation assay.

Lentiviral infection
The lentiviral constitutive and inducible knockdown systems were packaged into non-replicating len-

tivirus HIV-1 using II generation packaging system – psPAX by PVM platform (IGF, Montpelier).

Immortalized BJ-hTERT and U2OS cells were infected at MOI 10 with lentivirus armed pTRIPZ

GAPDH positive CTRL and Ki-67 inducible shRNA, and immortalized BJ hTERT, U2OS and HeLa

were infected at MOI 10 with lentivirus armed pGIPZ shRNA non-silencing and Ki-67 constitutive sys-

tem. Lentiviral transduction was performed according to the manufacturer’s protocol (Thermo Scien-

tific). 2 days after infection cells were selected with 10 mg/ml puromycin for 4 days. Cells were

treated with progressively increased puromycin concentrations up to 60 mg/ml, to select the most

highly transduced population.

shRNAs
The lentiviral constitutive knockdown vectors containing shRNAs were purchased from ThermoFisher

Scientific.
1. pGIPZ shRNAmir Ki-67 (clone ID: V2LHS-151787)
AGGCTACAAACTCGTAAGGAAATAGTGAAGCCACAGATGTATTTCCTTACGAGTTTGTAGCCG
2. pGIPZ shRNAmir CTRL non-targeting (RHS4346)
ACCTCCACCCTCACTCTGCCATTAGTGAAGCCACAGATGTAATGGCAGAGTGAGGG

TGGAGGG
The lentiviral doxycycline-inducible knockdown positive control vector containing shRNA GAPDH

was purchased from Thermo Scientific.
3. pTRIPZ shRNAmir GAPDH
CCCTCATTTCCTGGTATGACAATAGTGAAGCCACAGATGTATTGTCATACCAGGAAATGAGGT
pTRIPZ shRNAmir Ki-67 vector was obtained by sub-cloning to replace the shRNAmir GAPDH in

pTripZ with the shRNAmir sequence from pGIPZ shRNAmir Ki-67.

Induction of shRNA expression in cells transduced with inducible pTripZ
shRNA
To induce expression of shRNA, cells were treated with 2 mg/ml doxycycline hyclate (Sigma-Aldrich)

for minimum 24 hr and then during the period of designed experiments. Downregulation of mRNA

of shRNA target genes was analysed 24 hr post induction.

siRNA transfection
The SMARTpool: ON-TARGETplus siRNAs were purchased from GE Dharmacon (Lafayette, CO,

USA). Cells were transfected with SMARTpool: ON-TARGETplus siRNA non-targeting (D-001810-

10), MKI67 (L-003280-00) and FZR1 (L-015377-00) at 100 nM by Calcium Phosphate transfection

method.

Calcium phosphate transfection
Materials
2.5 M CaCl2, 2x HBSS buffer (50 mM HEPES, 280 mM NaCl, 1.5 mM Na2HPO4, 10 mM KCl; pH

7,04), sterile H2O.
Cells were plated at density of 1.5x104/cm2 in the afternoon the day before transfection. 30 min

before transfection, growing medium with antibiotics were exchanged for 2 ml of growing medium

without antibiotics, if cells were plated on 21 cm2. Calcium phosphate–DNA coprecipitate were
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prepared by pipetting 112.5 mL sterile H2O, 12.5 mL of 2.5 M CaCl2 and 2 mL of 100 mM siRNA (final

concentration - 100 nM in medium above cells), without vortexing. CaCl2-siRNA solution were com-

bined with equal volume of 2xHBSS buffer. Coprecipitates were incubated at room temperature for

5 min, mixed by pipetting, added drop by drop into medium above cells and distributed by moving

back and forward.

Cell extracts and western-blotting
Frozen pellets (harvested by trypsinization, washed with cold PBS) were lysed directly in Laemmli

buffer at 95˚C (without b-mercaptoethanol and bromophenol blue) and sonicated in a chilled bath

for 10 min in 30 s/30 s ON/OFF intervals. Protein concentrations were determined by BCA protein

assay (ThermoFisher). Equivalently loaded proteins were separated by SDS-polyacrylamide gel elec-

trophoresis (SDS-PAGE) (usually on 12 cm x 14.5 cm 7.5% and 12.5% gels) at 35 mA in TGS buffer

(25 mM Tris, 200 mM glycine, 0.1% SDS). The proteins were then transferred to Immobilon mem-

branes (Milipore) at 1.15 mA/cm2 for 120 min with a semidry blotting apparatus containing transfer

buffer (25 mM Tris, 200 mM Glycine, 0.2% SDS, 20% EtOH). Membranes were blocked in TBST pH

7.6 (20 mM Tris, 140 mM NaCl, 0.1% Tween-20) containing non-fat dry milk (5%), incubated with

antibody for 2 hr at RT with agitation in TBST containing non-fat dry milk (1,25%), washed several

times with TBST for a total of 45 min, incubated with secondary antibody at 1/5000 dilution in TBST

containing non-fat dry milk (1.25%) for 1 hr at RT with agitation and washed several times for 1 hr in

TBST. Secondary antibodies were either goat antibodies to mouse IgG-HRP (immunoglobulin G –

horseradish peroxidase) (DACO) or donkey antibodies to rabbit IgG-HRP (immunoglobulin G –

horseradish peroxidase) (GE Healthcare). The detection system used was Western Lightning Plus-

ECL (PerkinElmer, Paris, France) and Amersham Hyperfilm (GE Healthcare).

FLIM-FRET measurements
FLIM-FRET experiments were carried out on a HeLaH2B-2FPs cell line stably expressing GFP and

mCherry tagged histone H2B as previously described (Llères et al., 2009). Fluorescence Lifetime

Imaging Microscopy (FLIM) was performed using an inverted laser scanning multiphoton microscope

LSM780 (Zeiss) equipped with temperature-controlled environmental black walls chamber. Measure-

ments were acquired at 37˚C, with a 63" oil immersion lens NA 1.4 Plan-Apochromat objective from

Zeiss. Two-photon excitation was achieved using a Chameleon Ultra II tunable (680–1080 nm) laser

(Coherent) to pump a mode-locked frequency-doubled Ti:Sapphire laser that provided sub-150-fem-

tosecond pulses at a 80-Mhz repetition rate with an output power of 3.3 W at the peak of the tuning

curve (800 nm). Enhanced detection of the emitted photons was afforded by the use of the HPM-

100 module (Hamamatsu R10467-40 GaAsP hybrid PMT tube). The fluorescence lifetime imaging

capability was provided by TCSPC electronics (SPC- 830; Becker & Hickl GmbH). TCSPC measures

the time elapsed between laser pulses and the fluorescence photons. EGFP and mCherry fluoro-

phores were used as a FRET pair. The optimal two-photon excitation wavelength to excite the donor

(EGFP) was determined to be 890 nm (Llères et al., 2007). Laser power was adjusted to give a

mean photon count rate of the order 4.104–105 photons/s. For imaging live cells by FLIM, the stan-

dard growth medium was replaced with phenol red-free DMEM supplemented with 10% FBS. Fluo-

rescence lifetime measurements were acquired over 90 s and fluorescence lifetimes were calculated

for all pixels in the field of view (256"256 pixels) and then a particular region of interest (e.g.,

nucleus) was selected using SPCImage software (Becker & Hickl, GmbH).

Analysis of the fluorescence lifetime measurements for FRET
experiments
The analysis of the FLIM measurements was performed by using SPCImage software. Because FRET

interactions cause a decrease in the fluorescence lifetime of the donor molecules (EGFP), the FRET

efficiency can be calculated by comparing the FLIM values obtained for the EGFP donor fluoro-

phores in the presence and absence of the mCherry acceptor fluorophores. Mean FRET efficiency

images were calculated such as the FRET efficiency, EFRET ¼ 1$ ðtDA=tDÞ, where tDA is the mean

fluorescence lifetime of the donor (H2B-EGFP) in the presence of the acceptor (mCherry-H2B)

expressed in the HeLaH2B-2FPs and t D is the mean fluorescence lifetime of the donor (H2B-EGFP)

expressed in HeLaH2B-GFP in the absence of acceptor. In the non-FRET conditions, the mean
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fluorescence lifetime value of the donor in the absence of the acceptor was calculated from a mean

of the t D by applying an exponential decay model to fit the fluorescence lifetime decays.
In the FRET conditions, we applied a biexponential fluorescence decay model to fit the experi-

mental decay curves fðtÞ ¼ a e$t= t DA þ b e$t= t D. By fixing the noninteracting proteins lifetime tD

using data from control experiments (in the absence of FRET), the value of tDA was estimated.

Then, the FRET efficiency (EFRET) was derived by applying the following equation: EFRET ¼

1$ ð t DA= t DÞ at each pixel in a selected ROI using SPCImage software. The FRET distribution

curves from these ROIs were displayed from the extracted associated matrix using SPCImage and

then normalized and graphically represented using Excel and GraphPad Prism software.

Immunofluorescence
Cells were seeded on 12 mm diameter coverslips #1.5 coated with 1% gelatine. Before fixation cov-

erslips were washed once with PBS. Then, cells were fixed either in 3.7% formaldehyde for 15 min at

RT or in cold 100% MeOH (10 min, -20˚C). Formaldehyde fixed cells were immediately washed twice

with PBS and permabilized in 0.2% TRITON X-100 for 15 min at RT, while MeOH fixed cells on cover-

slips were transferred on tissue paper and kept at RT to dry. Next, cells were blocked in blocking

solution (5% FBS; 0.1% Tween-20 in PBS) for 30 min at RT, incubated overnight with primary anti-

bodies diluted in blocking solution at 4˚C, washed 3 times 5 min with PBS-Tween (0.1% Tween-20 in

PBS), incubated with secondary antibody at RT for 1 hr, and washed 4 times 5 min with PBS-Tween.

Secondary antibodies were diluted 1:1000 for fluorophores Alexa488; 555; 568 and 1:500 for fluoro-

phore Alexa647. Coverslips were washed in distilled water prior mounting on slide with ProLong

Gold Antifade Reagent with DAPI.

Nucleolar imaging
HeLa or U2OS cell lines were cultured in 96-well plates. For siRNA-mediated Ki-67 depletion, a

transfection reagent (mix of 0.125 ml of Interferin and 20 ml of Optimem) was added to each well of

the plate and left for 10 min at RT˚. SiRNA (10 ml of 100 nM) were added and left for another 30 min

at RT˚. Cells (70 ml of 300,000 cells/ml dilution) were then added to each well and the plates were

incubated for 3 days at 37˚C with 5% CO2. Nucleolar structure disruption was performed by treat-

ment of the cells with 0.2 mg/ml of Actinomycin D, 40 mM roscovitine or 60 mM DRB for 90 min.
For immunofluorescence, cells were fixed in 2% formaldehyde, washed in PBS and blocked in PBS

supplemented with 5% BSA and 0.3% Triton X-100 during 1 hr at RT˚. Anti-Pes 1 antibody (1:1,000;

courtesy from E. Kremmer), anti-Ki-67 antibody (1:500, Cell Signaling) and/or anti-Fibrillarin antibody

(1:250, antibodies online) were diluted in PBS supplemented with 1% BSA, 0.3% Triton X-100 and

incubated with the cells O/N at 4˚C. Cells were washed in PBS and incubated with the secondary

antibody coupled to AlexaFluor 488 or 594 (1:1,000; Invitrogen) in PBS, 1% BSA, 0.3% Triton X-100

for 1 hr at RT˚. Cells were washed in PBS and treated with DAPI.
Microscopy was performed on a Zeiss Axio Observer.Z1 microscope driven by MetaMorph (MDS

Analytical Technologies, Canada). Images were captured in the confocal mode using a Yokogawa

spindisk head and the HQ2 camera with a laser illuminator from Roper (405 nm 100 mW Vortran,

491 nm 50 mW Cobolt Calypso, and 561 nm 50 mW Cobolt Jive) and 40x or 100x objectives (Zeiss).

Line scans and images were constructed using Image J. The CellProfiler software was used to quan-

tify the DAPI intensity at the peri-nucleolar region of about 100 individual cells and classical statisti-

cal t-test was applied to the data to compare the intensity distributions.

Immunohistochemistry
Freshly dissected small intestines were flushed and fixed for 4 hr in neutral buffered formalin before

paraffin embedding. Briefly, 5-mm-thick sections were dewaxed in xylene and rehydrated in graded

alcohol baths. Antigen retrieval was performed by boiling slides for 20 min in 10 mM sodium citrate

buffer, pH 6.0. Nonspecific binding sites were blocked in blocking buffer (TBS, pH 7.4, 5% dried

milk, and 0.5% Triton X-100) for 60 min at RT. Sections were then incubated with primary antibodies

diluted in blocking buffer overnight at 4˚C. Primary antibodies used were as follows: anti Ki-67

(Ab16667) and anti DCLK1 (Ab31704) were from Abcam, Cambridge, UK. Anti beta-catenin

(BD610154) was from BD-Bioscience, Oxford, UK. Anti BrdU (G3G4) was form the Developmental

Studies Hybridoma Bank. Slides were then washed two times with 0.1% PBS-Tween (Sigma-Aldrich)
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before incubation with fluorescent secondary antibodies conjugated with either Alexa 488, Cyanin-3,
or Cyanin-5 (Jackson ImmunoResearch Laboratories, Inc.) and Hoechst at 2 mg/ml (Sigma-Aldrich) in
PBS–Triton X-100 0.1% (Sigma-Aldrich). Stained slides were then washed two extra times in PBS
before mounting with Fluoromount (Sigma-Aldrich). Methods used for bright-field immunohis-
tochemistry were identical, except that slides were incubated with 1.5% H2O2 in methanol for
20 min and washed in PBS to quench endogenous peroxydase activity before antigen retrieval. Envi-
sion+ (Dako) was used as a secondary reagent. Signals were developed with DAB (Sigma-Aldrich)
and a hematoxylin counterstain (DiaPath) was used. After dehydration, sections were mounted in
Pertex (Histolab). Goblet cells staining was achieved with a periodic acid/Schiff’s reaction (Sigma-
Aldrich)."

FISH
Fish of major satellite DNA in combination with immunofluorescence was performed in formalde-
hyde fixed cells, as in (Saksouk et al., 2014).

Table of antibodies used in western blotting and immunofluorescence

Protein Clone WB dilution
IF
dilution Company Reference

human
Ki-67

SP6 1/300 1/300 Abcam ab16667

human Ki-67 35/Ki-67 1/200 1/200 BD Transduction
Laboratories

610968

mouse
Ki-67

SolA15 1/300 1/300 Ebioscience 14-5698-80

human
pRB

G3-245 1/300 x BD Pharmingen 554136

human
cyclin A

6E6 1/250 1/100 Novocastra NCL-CYCLIN A

cyclin A H-432 1/500 1/300 Santa Cruz
Biotechnology

sc-751

phospho-Histone H3 (Ser 10) 1/500 Cell signaling 9701

trimethyl-Histone H3 (Lys 9) x 1/500 Milipore 07-442

trimethyl-Histone H4 (Lys 20) x 1/500 Abcam ab9053

HP1a 15.19s2 x 1/500 Milipore 05-689

HP1b x 1/200 Abcam ab10478

HP1g 2MOD-1G6 Active motif 39981

nucleolin 4E2 x 1/500 Abcam ab13541

CENP-A x 1/400 Cell signaling 2186

Pes1 1/1000 Gift from
E. Kremmer

Fibrillarin 1/250 Antibodies online

Nuclear extract preparation
Materials
Buffer A (10 mM HEPES pH 7.9; 10 mM KCl; 0,1 mM EDTA; 0.1 mM EGTA + freshly added 0.2 mM
Na3VO4; 20 mM MG132; 1 mM DTT; Complete-Protease inhibitor cocktail); IGEPAL CA-630 (Sigma-
Aldrich); Buffer C (20 mM HEPES pH 7.9; 1 mM EDTA; 1 mM EGTA; 400 mM NaCl; 25% glycerol +
freshly added 0.2 mM Na3VO4; 20 mM MG132; 1 mM DTT; Complete-Protease inhibitor cocktail).

107 cells were harvested by trypsinization, washed once with cold PBS, pelleted by centrifugation
and resuspended in 200 mL chilled buffer A. Then, cells were incubated on ice for 5 min. 10% IGEPAL
CA-630 was added to each lysate (to a final concentrationof 0.2%) and the samples were vortexed
for 15 s prior to incubation on ice for 15 min. The lysates were pelleted by centrifugation at 13,000 x
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g for 30 s at 4˚C, supernatants were kept as a cytoplasmic fraction. Residual pellets were resus-

pended in 300 mL of ice-cold buffer C prior to incubation for 1 hr at 4˚C with rotation. Next, the lys-

tates were vortexed for 30 s and centrifuged for 10 min at high speed at 4˚C. Supernatant were

collected as a nuclear extract and stored at -80˚C. Protein concentration were determined by Brad-

ford assay (Sigma-Aldrich).

Ki-67 mRNA engagement in polysome fractions
Cells were pre-treated 5 min with 20 mg/mL of emetine, before being collected, washed and resus-

pended in ice cold homogenization buffer (50 mM Tris-HCl ph7.5, 5 mM MgCl2, 25 mM KCl, 0.2M

Sucrose, 0.5% NP-40, EDTA-free protease inhibitors (Roche), 10 U/ML RNAse Out (Invitrogen),

DEPC water). We then lyzed cells using Lysing Matrix D beads and FastPrep sample preparation sys-

tem (MP Bio). The cleared lysate was layered on 15–50% sucrose gradient in the same buffer

(homogenization buffer minus NP-40). Following centrifugation at 35,000 rpm (Beckman, SW41.Ti)

for 2.5 hr at 4˚C, gradients were fractionated (density gradient fractionator, Teledyne Isco) with

absorbance measured continuously at 254 nm. We isolated RNA from fractions with TRIzol (Thermo

Fisher Scientific) following the manufacturer’s instructions. We then reverse transcribed purified RNA

into cDNA following RT-PCR method. We analysed Ki-67 mRNA level in polysome fractions using

two Mki67 primer pairs (5’-AATCCAACTCAAGTAAACGGGG-3’, 5’-TTGGCTTGCTTCCATCCTCA-3’

and 5’-CATCAGCCCATGATTTTGCAAC-3’, 5’-CTGCGAAGAGAGCATCCATC-3’) normalizing to

housekeeping genes (Gapdh: 5’-AAATGGTGAAGGTCGGTGTG-3’, 5’-AATCTCCACTTTGCCAC

TGC-3’; B2m: 5’-GGTCTTTCTGGTGCTTGTCT-3’, 5’-GCAGTTCAGTATGTTCGGCTT-3’; Actb: 5’-

TCCTGGCCTCACTGTCCAC-3’, 5’-GTCCGCCTAGAAGCACTTGC-3’; Hprt: 5’-AAGCCTAAGA

TGAGCGCAAG-3’, 5’-TTACTAGGCAGATGGCCACA-3’).

Cloning of cDNA of full-length Ki-67 tagged with GFP and 3xFLAG
Materials
SuperScript II Reverse Transcriptase (ThermoFisher), Pfu DNA Polymerase (Promega, Lyon, France),

pGEM-T Easy Vector (Promega), Gateway pENTR Vector (LifeTechnologies), KpnI (NEB), AlfII (NEB),

Ligase T4 (Promega).

Table of primers

Name Sequence

BamHI-AF AAGGATCCGCCGCCACCATGTGGCCCACGAGACGCCTG

AR GGCCACGTGCCGTGTCTTTCA

BF AAGGAGCAACCGCAGTT

BR TGTGTCCATAGCTTTCCCTAC

CF GATAAAGGCATCAACGTGTTC

CR GGAGTTTATGAAGCCGATTC

Total RNA purified from exponentially growing HeLa cells was used as a template in reverse tran-
scription reaction using SuperScript II Reverse Transcriptase (ThermoFisher) with primers AR, BR and

CR to synthesize cDNA template. Full length Ki-67 cDNA was obtained by cloning into pGEM-T vec-

tor of three overlapping parts amplified using Pfu DNA Polymerase and primers pairs BamHI-AF/AR,

BF/BR and CF/CR. Three parts of full length cDNA were joined together by digestion and ligation

reactions. Parts B and C were digested with KpnI enzyme and ligated together. Parts A and BC were

digested with AlfII and ligated together. Full length cDNA were cloned into Gateway pENTR Vector

containing KOZAK sequence by digesting with BamHI introduced site in 5’ site and with SacII in 3’

site. Next, KOZAK-Ki-67 cDNA were transferred into Gateway pDEST vector (pcDNA5/GFP/

3xFLAG/FRT) to tagged Ki-67 construct with GFP and 3xFLAG sequence at 5’ site.
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Immunoprecipitation of 3xFLAG Ki-67
1.5x107 U2OS cells were transfected with pcDNA5 plasmid expressing 3xFLAG-Ki-67.

As a control, an equal number of cells were transfected with pcDNA3 plasmid expressing
3xFLAG-TRIM39 or 3xFLAG. 24 hr after transfection, cells were harvested and the nuclear extracts

prepared. 100 mg of nuclear protein extract were combined with 40 ml anti-FLAG M2– agarose

beads (Sigma-Aldrich), and incubated for 1 hr at 4˚C with rotation. Beads were washed 5 times for 5

min at 4˚C with rotation with washing buffer (20 mM HEPES pH 7.9; 1 mM EDTA; 1 mM EGTA;

150 mM NaCl; 25% glycerol + freshly added 0.2 mM Na3VO4; Complete-Protease inhibitor cocktail)

and the precipitates were eluted by 50 mL of SDS denaturation buffer, and heating at 95˚C for 5 min.

Mass spectrometry analysis
Eluted proteins were reduced, alkylated, analysed in a 4–20% gradient gel (BioRad) and entire lanes

were sliced. Tryptic peptides were prepared for mass spectrometry, essentially as described, and

then concentrated with a pre-column (Thermo Scientific, C18 PepMap100, 300 mm " 5 mm, 5 mm,

100 A) at a flow rate of 20 mL/min using 0.1% formic acid. Samples were separated with a C18

reversed-phase capillary column (Thermo Scientific, C18 PepMap100, 75 mm " 250 mm, 3 mm, 100

A) at a flow rate of 0.3 mL/min using the following gradient: 8–28% acetonitrile in 40 min and then

from 28–42% in 10 min. The HPLC system was coupled online to a Q-TOF Maxis Impact (Bruker Dal-

tonik GmbH, Bremen, Germany) mass spectrometer. Up to 30 data-dependent MS/MS spectra were

acquired in positive ion mode. MS/MS raw data were analysed using Data Analysis software (Bruker

Daltonik GmbH, Bremen, Germany) to generate the peak lists. The Homo sapiens Complete Prote-

ome database (downloaded on Uniprokb 20131108, contains 88,266 sequences) was queried locally

using the Mascot search engine v.2.2.07 (Matrix Science, http://www.matrixscience.com) and with

the following parameters: 2 missed cleavages, carbamidomethylation of Cysteine as fixed modifica-

tion and oxidation of Methionine, phosphorylation of Threonine and Serine as variable modifications.

MS tolerance was set to 20ppm for parent ions and 0.05 Da for fragment ions.
For SILAC, samples were prepared as described (Skorupa et al., 2013). Peptides were analysed

online by nano-flow HPLC–nanoelectrospray ionization using an Q Exactive mass spectrometer

(Thermo Fisher Scientific) coupled to an Ultimate 3000 RSLC (Dionex, Thermo Fisher Scientific).

Desalting and pre-concentration of samples were performed on-line on a Pepmap pre-column

(0.3 mm " 10 mm, Dionex). A gradient consisting of 0–40% B in A for 60 min, followed by 80% B/

20% A for 15 min (A = 0.1% formic acid, 2% acetonitrile in water; B = 0.1% formic acid in acetoni-

trile) at 300 nL/min was used to elute peptides from the capillary reverse-phase column (0.075 mm

" 150 mm, Pepmap, Dionex).
Raw data analysis was performed using the MaxQuant software (v. 1.5.0.0) (Cox and Mann,

2008) using standard parameters except Requantity option set as TRUE or FALSE. Peak lists were

searched against the UniProt Mouse database (release 2015_11; http://www.uniprot.org), 255 fre-

quently observed contaminants as well as reversed sequences of all entries.
Graphical representations were generated using perseus (1.5.3.2).

RT-PCR
Materials
10 mM dNTPs (LifeTechnologies), 50 mM random hexaprimers (NEB, Evry, France), SuperScript II

Reverse Transcriptase (ThermoFisher), RNasin Plus RNase Inhibitor (Promega).
1000 ng of purified RNA in total volume of 10 mL, extracted by RNeasy Mini Kit (Qiagen, Paris,

France), were mixed with 1 mL of 10 mM dNTPs (2.5 mM of each) and 1 mL of 50 mM random hexap-

rimers (New England Biolabs). Samples were incubated at 65˚C for 5 min, then immediately trans-

ferred on ice. Next, into samples were added 5 mL of 5xFirst Strand Buffer, 2 mL 100 mM DTT and 1

mL RNasin RNase Inhibitor. Samples were incubated at 25˚C for 10 min and at 42˚C for 2 min. 1 mL

of SuperScript II Reverse Transcriptase was added to each sample, prior to incubation at 42˚C for 60

min, 70˚C for 15 min.

qPCR
qPCR was performed using LightCycler 480 SYBR Green I Master (Roche, Grenoble, France) and

LightCycler 480 qPCR machine. The reaction contained 5 ng of cDNA, 2 mL of 1 mM qPCR primer
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pair (final concentration of each primer was 200 nM in reaction mixture), 5 mL 2x Master Mix, and

final volume made up to 10 mL with DNase free water. qPCR was conducted at 95˚C for 10 min, and

then 40 cycles of 95˚C for 20 s, 58˚C for 20 s and 72˚C for 20 s. The specificity of the reaction was

verified by melt curve analysis. Each sample was performed in three replicates.

Table of qPCR primers (Tm - 60˚C)

Target Forward Reverse

human MKI67 Qiagen Qiagen QuantiTect Hs_MKI67_1_SG

human MKI67 TGACCCTGATGAGAAAGCTCAA CCCTGAGCAACACTGTCTTTT

human CCNA2 AGGAAAACTTCAGCTTGTGGG CACAAACTCTGCTACTTCTGGG

human CCNE1 CCGGTATATGGCGACACAAG ACATACGCAAACTGGTGCAA

human CCNB1 TGTGTCAGGCTTTCTCTGATG TTGGTCTGACTGCTTGCTCT

human CDC6 TTGCTCAGGAGATTTGTCAGG GCTGTCCAGTTGATCCATCTC

human FZR1 TCTCAGTGGAAGGGGACTCA CAACATGGACAGCTTCTTCCC

human B2M (norm) GCGCTACTCTCTCTTTCTGG AGAAAGACCAGTCCTTGCTGA

human RPL19 (norm) ATGCCGGAAAAACACCTTGG GTGACCTTCTCTGGCATTCG

mouse Mki67 AATCCAACTCAAGTAAACGGGG TTGGCTTGCTTCCATCCTCA

mouse B2M (norm.) GGTCTTTCTGGTGCTTGTCT GCAGTTCAGTATGTTCGGCTT

RNA electrophoresis
For analysis of high-molecular-weight species, 5 mg of total RNA were resolved on agarose denatur-

ing gels (6% formaldehyde/1.2% agarose in HEPES-EDTA buffer). For the analysis of the low-molecu-

lar-weight RNA species 5 mg of total RNA were separated on denaturing acrylamide gels (8%

acrylamide-bisacrylamide 19:1/8 M urea in Tris-borate-EDTA buffer [TBE]) for 4 hr at 350 V.

Northern blotting
Agarose gels were transferred by capillarity overnight in 10" saline sodium citrate (SSC) and acryl-

amide gels by electrotransfer in 0.5" TBE on nylon membranes (GE Healthcare). Membranes were

prehybridized for 1 hr at 65˚C in 50% formamide, 5" SSPE, 5" Denhardt’s solution, 1% w/v SDS,

200 mg/ml fish sperm DNA solution (Roche). The 32P-labeled oligonucleotide probe was added and

incubated for 1 hr at 65˚C and then overnight at 37˚C.

Sequences of the probes

Oligo probe name Sequence

LD1827 (ITS1) CCTCGCCCTCCGGGCTCCGGGCTCCGTTAATGATC

LD1828 (ITS2) CTGCGAGGGAACCCCCAGCCGCGCA

LD1829 GCGCGACGGCGGACGACACCGCGGCGTC

LD1844 (5’-ETS) CGGAGGCCCAACCTCTCCGACGACAGGTCGCCAGAGGACAGCGTGTCAGC

LD2079 (5’-ITS2) GGGGCGATTGATCGGCAAGCGACGCTC

LD2132 (5.8S mat) CAATGTGTCCTGCAATTCAC

LD2133 (7SL) GCTCCGTTTCCGACCTGGGCC

LD2655 GGAGCGGAGTCCGCGGTG
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TALEN-mediated Ki-67 mutant mice
Plasmids encoding two TALEN pairs were purchased from Cellectis (Paris, France). They were

designed to bind the following sequence of Mki67 gene: 5’ TCCCGACGGCCGGGCGG

ACCATGGCGTCCTC GGCTCACCTGGTCACCA 3. Underlined sequences are recognised by the left

or the right TALEN, respectively. Plasmids were linearized by PacI digestion and used as a template

forin vitro transcription to produce TALEN-encoding mRNAs using T7 RiboMAX Express System

(Promega). Transcripts were purified using MEGAclear Transcription Clean-Up Kit (Ambion, Thermo-

Fisher). Quality and quantity of transcribed mRNAs were verified by BioAnalyzer (Agilent, Paris,

France). Next, 32 ng or 8 ng of each TALEN-encoding mRNAs were injected into zygotes and

implanted into 36 or 18 mice, respectively. 7 chimeric mutant mice were obtained with deletions

ranging between 1nt and 38 nt by injection of 32 ng of each mRNAs (22% NHEJ) and 1 chimeric

mouse with deletion of 24 nt by injection of 8 ng of each mRNAs. Founder mice were crossed and

we obtained four mice for germline transmission (1nt, 2nt, 3nt, 24nt deletion).

Genotyping of TALEN-mediated Ki-67 mutant mice
Genomic DNA was purified from mouse-tail piece using KAPA Express Extract Kit (Kapa Biosystems,

London, UK). PCR was conducted using the primers 5’GGCCAGAGCTAACTTGCGCTGACTG 3 ‘and

5’AAACAGGCAGGAGCTGAGGCTCAGC 3 ‘and Pfu DNA Polymerase (Promega). Product size 203

bp. Then, PCR product was cleaned up using ExoSAP-IT (Affymetrix, High Wycombe, UK) and

sequenced using 5’GGCCAGAGCTAACTTGCGCTGACTG 3 ‘primer.

Histology of TALEN-mediated Ki-67 mutant mice
Genotyped mice pups were fixed in 4% paraformaldehyde for 48 hr and formol 10% 3 days prior to

after longitudinal section in 2 parts. Embryos were decalcified in EDTA 10% - Formol 2,5% before

paraffin embedding. Tissue was dehydrated through a series of graded ethanol baths and then infil-

trated with wax. Infiltrated tissues were then embedded into wax blocks. From these blocks, 5-mm-

thick sections were cut and then stained with hematoxylin.

MEF isolation
MEF were isolated from E13.5 embryos of the corresponding genotype. The female was killed by

cervical dislocation. The uterine horns were dissected and placed into a petri dish containing PBS.

Each embryo was separated from its placenta and surrounding membranes. The brain, all dark red

organs and the intestine were cut away and blood was removed as much as possible. The remaining

parts of the embryo were transferred into a dish containing 1 ml of 1x Trypsin-EDTA 0.25%. They

were finely minced with a razor blade and incubated at 37˚C for 1 hr in a 5% CO2 incubator. Trypsin

was inactivated with 4 ml of DMEM supplemented with 10% fetal bovine serum and 1% Penicillin/

Streptomycin and the carcass was homogenized by several passages up and down using a pipet.

Finally, 6 ml of DMEM media were added and cells were incubated at 37˚C in an incubator contain-

ing 3% O2 and 5% CO2.

Immunohistochemistry
Mouse intestinal epithelium was processed for immunohistochemistry as described (Gerbe et al.,

2011). Cdh1 knockout mice were analysed by immunohistochemistry as described (Eguren et al.,

2013).

Single TALEN-mediated Ki-67 KO in NIH-3T3 mouse fibroblasts
NIH-3T3 cells were plated at a density of 3x104/cm2 in the afternoon the day before transfection.

Cells were transfected with plasmids encoding: TALEN pair targeted to initial ATG described in sec-

tion TALEN-mediated Ki-67 KO mouse and pEGFP, or pEGFP by itself. Next day, eGFP positive cells

were sorted by FACS (BD FACSAria) and around 240 cells from each condition were plated in five

96-well plates (480 wells). Two weeks later, we obtained around 50 clones from each condition.

Then, TALEN-mediated mutants were screened for Ki-67 expression by immunofluorescence. Nine

selected clones were then screened by PCR and sequencing.
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Sequencing and PCR analysis of single TALEN Ki-67 mutant NIH-3T3
cell lines
Genomic DNA were purified from harvested cells using KAPA Express Extract Kit (Kapa Biosystems).

PCR product was amplified using the primers 5’ AGAGCTAACTTGCGCTGACT 3’ and 5’ TCGCGTC

TACCGAGTGTAAAA 3’ and Pfu DNA Polymerase (Promega). Product size 364 bp. For sequencing

one additional amplification cycle was performed using Taq Polymerase to add a 3’ dA overhang on

the end of PCR fragment. Next, PCR product was ligated with pGEM-T Easy Vector (Promega).

Competent bacteria were transformed with ligation reaction and plated on agar plates with ampicil-

lin, IPTG and X-Gal. Next day ten white colonies were selected from each individual ligation reaction

to perform plasmid preparation. Purified plasmids were sequenced using T7 and SP6 RNA Polymer-

ase transcription initiation site primers.

Generation of TALEN pair targeted to site of STOP codon of the mouse
MKI67 gene
TALENs were designed using TAL Effector Nucleotide Targeter 2.0 (Cornell University) software to

bind following sequence of Mki67 gene: 5’ TACCAGAAAAGTGAAACTATGTAGCAAAGACATTTAA-

GAAGGAAAAGT 3’ and assembled using The Golden Gate TALEN kit (AddGene). Underlined

sequences are recognised by the left TALEN or the right TALEN, respectively.

Double TALEN-mediated eGFP transgenic Ki-67 mutant
NIH-3T3 cells were plated at density of 3x104/cm2 in the afternoon the day before transfection. Cells

were transfected with plasmids encoding: TALEN pair targeted to initial ATG described in section

TALEN-mediated Ki-67 KO mouse; TALEN pair targeted to site of STOP codon MKI67 gene;

reporter system (Kim et al., 2013) containing STOP codon area as a target sequence; linearized con-

struct containing Mki67 locus replaced by eGFP gene. Two days after transfection, hygromycin

selection was performed by culturing the cells in the presence of 2 mg/ml of hygromycin B for two

days at 37˚C. For clonal analysis, around 500 hygromycin-selected cells were plated in ten 96-well

plates (960 wells). Two weeks after, around 100 clones (10% ) were screened by immunofluorescence

for Ki-67 expression.

DNA replication assay
Analysis of DNA replication progress in cells was achieved by treatment with 10 mM 5-ethynyl-2’-

deoxyuridine (EdU) (ThermoFisher) before fixation. Replicating cells were visualized following the

protocol from Click-iT EdU Alexa Fluor 488 Imaging Kit (ThermoFisher).

RNA synthesis assay
Analysis of newly synthesised RNA in cells was achieved by treatment with 2 mM 5-ethynyl uridine

(EU) (ThermoFisher) for 20 min before fixation. Replicating cells were visualized following the proto-

col from Click-iT EU Alexa Fluor 488 Imaging Kit (ThermoFisher).

Flow cytometry
Cell cycle analysis
Cells were harvested, washed once with cold PBS, then, resuspended in 300 mL cold PBS and fixed

with 700 mL chilled 100% methanol. Cells were kept at -20˚C up to one day of analysis, but at least

overnight. On the day of analysis, cells were pelleted by centrifugation at 6000 rpm for 5 min. After

washing once with 1% BSA in PBS, cells were stained with Propidium Iodide staining solution (10 mg/

ml Propidium Iodide, 1% BSA, 200 mg/ml RNase A in PBS) for 15 min at room temperature and sub-

jected to cell cycle analysis using BD FACS Calibur (BD Biosciences, SanJose, CA).

DNA replication assay - EdU labelling
Cells were harvested, washed once with cold PBS, then, resuspended in 300 mL cold PBS and fixed

with 700 mL chilled 100% methanol. Cells were kept at -20˚C up to the day of analysis, but at least

overnight. On the day of analysis, cells were pelleted by centrifugation at 6000 rpm for 5 min. After

washing once with 1% BSA in PBS cells were stained with Click-iT EdU Alexa Fluor 488 Flow

Sobecki et al. eLife 2016;5:e13722. DOI: 10.7554/eLife.13722 29 of 33

Research Article Cell biology

http://dx.doi.org/10.7554/eLife.13722


Cytometry Assay Kit (ThermoFisher). The Click-iT TM EdU Flow Cytometry Assay system (Invitrogen)
was used following the manufacturer’s instructions.

Microarray analysis - transcriptome
RNA was prepared using RNeasy Mini Kit (Qiagen) following the manufacturer’s instructions from
U2OS shRNA non-targeting CTRL, U2OS shRNA Ki-67, HeLa shRNA non-targeting control CTRL,
HeLa shRNA Ki-67 grown 3 months after initial infection with lentivirus armed pGIPZ shRNA. RNA
was purified from three shRNA CTRL tumour xenografts or three shRNA Ki-67 tumour xenografts
isolated from mouse C1-SM (33 days after injection), C1-OD (41 days after injection) and C2-2OR
(46 days after injection) using TRIzol reagent (Life Technologies) following the manufacturer’s instruc-
tions. Cy3-labelled cRNA was amplified and hybridized on the Agilent SurePrint G3 Human GE
8x60k Microarray according to the procedures by Imaxio company (Lyon, France). Raw data were
preprocessed using GeneSpring GX software (Agilent Technologies) to define differently expressing
genes and present data by clustered heat-maps.

Statistical analysis of transcriptome
Significant differences between experimental groups were determined using an unpaired two-tailed
Student t test in Prism 5 (GraphPad). For all analyses, p values <0,05 (*), p values < 0,01 (**) and p
values <0,001 (***) were considered statistically significant. Transcripts that (i) demonstrated at least
a 1,5-fold change in expression, (ii) had a greater-than-background signal intensity value and were
determined to be ’Present’ by Affymetrix algorithms, and (iii) had a value that was significant by Stu-
dent’s t test and FDR (Benjamini Hochberg) correction (p<0.02 (U2OS, HeLa); p<0.2 (Xenografts))
were considered differentially expressed.
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