In the format provided by the authors and unedited.

SAMMSON fosters cancer cell fitness by concertedly enhancing mitochondrial and cytosolic translation

Roberto Vendramin^{1,2,3}, Yvessa Verheyden¹, Hideaki Ishikawa⁴, Lucas Goedert¹, Emilien Nicolas⁵, Kritika Saraf⁵, Alexandros Armaos⁶, Riccardo Delli Ponti⁶, Keichi Izumikawa⁴, Pieter Mestdagh^{7,8}, Denis L. J. Lafontaine⁵, Gian Gaetano Tartaglia⁶, Nobuhiro Takahashi⁴, Jean-Christophe Marine^{2,3} and Eleonora Leucci¹⁰

¹Laboratory for RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, Leuven, Belgium. ²Laboratory for Molecular Cancer Biology, Department of Oncology, LKI, KU Leuven, Leuven, Belgium. ³Laboratory For Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium. ⁴Department of Applied Biological Science, Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, Tokyo, Japan. ⁵RNA Molecular Biology, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Charleroi, Belgium. ⁶Centre for Genomic Regulation, University Pompeu Fabra and Catalan Institution for Research and Advanced Studies, Barcelona, Spain. ⁷Center for Medical Genetics, Gent University, Gent, Belgium. ⁸Cancer Research Institute Gent, Gent University, Gent, Belgium. *e-mail: eleonora.leucci@kuleuven.be

Supplementary Figure 1

SAMMSON actively participates to malignant transformation.

(a) SAMMSON relative expression measured by RT-qPCR in MeI-ST cells infected with an empty (Ctrl) or a SAMMSON-encoding (SAMMSON O/E) expression vector; n=7. (b) Cell proliferation assays in MeI-ST cells described in **a**. Error bars represent mean \pm s.e.m.; n=3. (c) Colony formation assays 5 days after seeding 1 x 10³ MeI-ST cells as described in **a**. The violet colour is given by crystal violet, a compound that binds intracellular DNA and protein thus highlighting the cells in the plate. Representative image of five independent experiments. (d) Quantification of colony formation assays of MeI-ST cells as described in **a** and **c** presented as the mean density (% of area occupancy); n=5. (e) Representative picture of xenograft tumors (encircled by the white dashed line) grown in nude mice derived from subcutaneous injection of 5 x 10³ MeI-ST cells as described in **a**. (f) Representative picture of resected xenograft tumors as described in **e**. Error bars represent mean \pm s.e.m.; n=6. Box boundaries represent 25th and 75th percentiles; center line represents the median; whiskers, last data point within \pm 1.5 interquartile range. *P* values were calculated by paired two-tailed Student's t-test. * *P*<0.05; ** *P*<0.01; *** *P*<0.001; **** *P*<0.0001.

XRN2, CARF and p32 levels are increased in melanoma.

(a) Western blot for XRN2, CARF and p32 in Normal Human Epidermal Melanocytes (NHEM), in SK-MEL-28 WT or BRAFi-resistant (SK-MEL-28-R) and in a panel of short-term melanoma cultures (MM-lines, with different mutational backgrounds and phenotype). (b) *SAMMSON* and *HRPT* pulldown in native (-) and UV crosslinking (+) conditions (using two sets of 48 biotinylated probes recognising mature transcripts, *p*) and western blotting in SK-MEL-28 cells. Representative image of three independent experiments. Uncropped gel images are shown in Supplementary Data Set 1.

SK-MEL-28

XRN2

6

CARF and XRN2 localization are specifically affected by SAMMSON knockdown and not by other stressors.

(a) XRN2 (cyan) and CARF (yellow) IF in SK-MEL-28 cells 30 hours after transfection with a non-targeting GapmeR (Ctrl), GapmeR3 or GapmeR11. Scale bar low magnification, 10 μm; high magnification, 2 μm. Representative image of three independent experiments. (b) Puromycin (Puro, white) or p32 (magenta) IF in SK-MEL-28 cells treated for 48 hours with 200 μg mL⁻¹ chloramphenicol or vehicle (EtOH). Cell nuclei are stained with DAPI (cyan). Scale bar low magnification, 10 μm; high magnification, 2 μm. Representative image of three independent experiments. (c) XRN2 (cyan) and fibrillarin (yellow) IF in SK-MEL-28 cells treated as in b. Scale bar low magnification, 10 μm; high magnification, 7 μm. Representative image of three independent experiments. (d) *NEAT1* (red) RNA fluorescence *in situ* hybridization (FISH) in untreated SK-MEL-28 cells (Mock) or in cells 72 hours after transfection with a control siRNA pool (siCtrl) or pools targeting *NEAT1* (si*NEAT1*) or si*NEAT1* long form only (si*NEAT1* long). Cell nuclei are stained with DAPI (blue). Scale bar low magnification, 10 μm; high magnification, 2 μm. Representative image of three independent experiments. (e) XRN2 (cyan) and fibrillarin (yellow) IF in SK-MEL-28 cells nuclei are stained with DAPI (blue). Scale bar low magnification, 10 μm; high magnification, 2 μm. Representative image of three independent experiments. (e) XRN2 (cyan) and fibrillarin (yellow) IF in SK-MEL-28 cells treated as described in d. Scale bar low magnification, 10 μm; high magnification, 2 μm. Representative image of three independent experiments. (e) XRN2 (cyan) and fibrillarin (yellow) IF in SK-MEL-28 cells treated as described in d. Scale bar low magnification, 10 μm; high magnification, 2 μm. Representative image of three independent experiments. (e) XRN2 (cyan) and fibrillarin (yellow) IF in SK-MEL-28 cells treated as described in d. Scale bar low magnification, 10 μm; high magnification, 2 μm. Representative image of three independent experiments.

XRN2 functions are specifically affected by SAMMSON knockdown.

(a) Left, schematic representation of the pre-rRNAs and the mature rRNAs detected by northern blotting, the orange arrows indicate the sites of pre-rRNA processing inhibition in the 5'-ETS (01, A0, and 1). The probe used is highlighted in grey. ETS: external transcribed spacers; ITS: internal transcribed spacers. The aberrant 34S RNA is produced when cleavage occurs in ITS1 prior to 5'-ETS. *, truncated form of the 34S RNA. Right, northern blot hybridization analysis of pre-rRNA isolated from three melanoma cell lines (with different mutational backgrounds and phenotype) transfected with a non-targeting GapmeR (Ctrl) or GapmeR11 (G11) or of SK-MEL-28 transfected with a XRN2-targeting (siXRN2) or control (siCtrl) siRNA. KD efficiency is shown for both SAMMSON KD and XRN2 KD. Representative image of three independent experiments. (b) SAMMSON (SAM), 18S, 16S, 12S, Cyclooxygenase 1 (COX1) and

NADH-ubiquinone oxidoreductase chain 1 (*ND1*) relative expression measured by RT-qPCR in SK-MEL-28 cells 30 hours after transfection with a non- targeting GapmeR (Ctrl) or with GapmeR11; n=5. (c) Northern blot hybridization analysis of mitochondrial prerRNA (mt_pre-rRNA) isolated from SK-MEL-28 cells transfected with a non-targeting GapmeR (Ctrl), GapmeR3 (G3) or a GapmeR11 (G11). Efficiency of *SAMMSON* KD and ratios of mt_pre-rRNA over 28S (the mature 28S is visualised by methylene blue staining of the denaturing agarose gel) rRNA are shown below the gel. Representative image of three independent experiments. (d) tRNA61-MetCAT expression levels in SK-MEL-28 cells treated with a non-targeting GapmeR (Ctrl) and GapmeR3; n=3. Box boundaries represent 25th and 75th percentiles; centre line represents the median; whiskers, last data point within ±1.5 interquartile range. *P* values were calculated by paired two-tailed Student's t-test. * *P*<0.05; ** *P*<0.01; *NS*, not significant. Uncropped gel images are shown in Supplementary Data Set 1.

С

b

CARF localization and its interaction with p32 are RNA and SAMMSON dependent.

(a) p32 (yellow) IF combined with 12S (red) RNA fluorescence *in situ* hybridization (FISH) in SK-MEL-28 cells 30 hours after transfection with a non-targeting GapmeR (Ctrl), GapmeR3 or GapmeR11. Cell nuclei are stained with DAPI (cyan). Scale bar, 4 μ m. Representative image of three independent experiments. (b) Proximity Ligation Assay (PLA, cyan) using antibodies against CARF and p32 in SK-MEL-28 cells in normal conditions (Ctrl) or after addition of RNase A. Cell nuclei are stained with DAPI (blue). Scale bar low magnification, 10 μ m; high magnification, 2 μ m. Representative image of three independent experiments. (c) p32 RIP in LCL cells infected with an empty (-) or a *SAMMSON*-encoding (+) expression vector and western blotting. Representative image of three independent experiments. (d) CARF (red) and p32 (yellow) IF in LCL cells as described in c. Cell nuclei are stained with DAPI (blue). Scale bar low magnification, 10 μ m, Scale bar high magnification, 2 μ m. Representative image of three independent experiments. (d) CARF (red) and p32 (yellow) IF in LCL cells as described in c. Cell nuclei are stained with DAPI (blue). Scale bar low magnification, 10 μ m, Scale bar high magnification, 2 μ m. Representative image of three independent experiments. Uncropped gel images are shown in Supplementary Data Set 1.

С

d

b

SK-MEL-28 GapmeR11 Ctrl SK-MEL-28 Input 0.5% IP o. CARF CARF 190 kDa 109-XRN2 CARF 65----p32 32- -Ctrl G11 Ctrl G11

Supplementary Figure 6

SAMMSON regulates the interaction between XRN2, CARF and p32.

(a) CARF (magenta) and mitotracker (white) IF in SK-MEL-28 cells 72 hours after transfection with a control siRNA pool (siCtrl) or an siRNA pool targeting CARF (siCARF). Cell nuclei are stained with DAPI (cyan). Scale bar, 10 μ m. Representative image of three independent experiments. (b) PLA (cyan) assay using antibodies against CARF and p32 in MeI-ST cells described in **Supplementary Figure 1a**. Cell nuclei are stained with DAPI (blue). Scale bar low magnification, 10 μ m; high magnification, 2 μ m. (c) *SAMMSON* relative expression measured by RT-qPCR in SK-MEL-28 cells 30 hours after transfection with a non-targeting GapmeR (Ctrl) or GapmeR11 (G11). Error bars represent mean ± s.e.m.; n=3. (d) CARF IP in SK-MEL-28 cells treated as described in c and western blotting. Representative image of three independent experiments. *P* values were calculated by paired two-tailed Student's t-test. ** *P*<0.01. Uncropped gel images are shown in Supplementary Data Set 1.

SAMMSON regulates rRNA biogenesis and protein synthesis.

(a) Pre-rRNA processing analysis in Mel-ST cells infected with an empty (Ctrl) or a SAMMSON-encoding (SAM O/E) expression vector. Left, structure of the pre-rRNAs detected and probes used. The aberrant 34S RNA observed after SAMMSON depletion (see Figure 5b) is highlighted in red. Right, northern blot hybridizations. The mature rRNAs are visualized by ethidium-bromide staining of the denaturing agarose gel. Representative image of three independent experiments. (b) Western blotting after a 10-minute pulse with puromycin and subsequent cytosol(Cyto)/mitochondria (Mito)/mitoplast(Mitopl) fractionation in Mel-ST cells infected with an empty (Ctrl) or a SAMMSON-encoding (SAM O/E). Representative image of four (Total and Cyto) and three (Mito and Mitopl) independent experiments. (c) Western blotting after a 10-minute pulse with puromycin and subsequent cytosol(Cyto)/mitochondria

chondria(Mito)/mitoplast(Mitopl) fractionation in LCL cells described in **a**. Representative image of five independent experiments. **(d)** Western blotting after cytosol(Cyto)/mito- chondria(Mito)/proteinase K-treated mitochondria(Mito+PK) fractionation in LCL cells described in **Figure 1a**. Representative image of four independent experiments. **(e)** Western blotting after a 3-hours pulse with AHA, followed by cytosol(Cyto)/mito- chondria(Mito)/proteinase K-treated mitochondria(Mito+PK) fractionation and subsequent Click-iT alkyne reaction in LCL cells described in **Figure 1a**. **(f)** IHC Ki67 staining of xenograft tumors as described in **Supplementary Figure 1e-g**. Scale bar, 100 μm. Representative image of eight independent experiments. **(g)** IHC puromycin staining of tumors as described in **Supplementary Figure 1e-g**. Scale bar, 100 μm. Representative image of eight independent experiments. Uncropped gel images are shown in Supplementary Data Set 1.

Primers	Sequence (5' to 3')	Note
SAMMSON forward	CCTCTAGATGTGTAAGGGTAGT	aPCR primer
SAMMSON reverse	TTGAGTTGCATAGTTGAGGAA	aPCR primer
TERRA forward	CCCTAACCCTAACCCTAACCCTA	aPCR primer
TERRA reverse	GAATCCACGGAATGCTTTGTGTACTT	aPCR primer
MALAT1 forward	GGATTCCAGGAAGGAGCGAG	aPCR primer
MALATI reverse	ATTGCCGACCTCACGGATTT	aPCR primer
LINC00698 forward	CTGGCAATTGGGACATCTAT	qPCR primer
LINC00698 reverse	GGCTTCTTTGTCAGCTTCTA	qPCR primer
p32 forward	ACACCGACGGAGACAAAG	qPCR primer
<i>p32</i> reverse	GGGATGCTGTTGTTAATGTTG	qPCR primer
COX1 forward	CTGCTATAGTGGAGGCCGGA	qPCR primer
COX1 reverse	GGGTGGGAGTAGTTCCCTGC	qPCR primer
ND1 forward	CGAGCAGTAGCCCAAACAAT	qPCR primer
ND1 reverse	CGGTTGGTCTCTGCTAGTGT	qPCR primer
18S forward	TTCGGAACTGAGGCCATG	qPCR primer
18S reverse	TTTCGCTCTGGTCCGTCT	qPCR primer
16S forward	CTCGATGTTGGATCAGGACA	aPCR primer
16S reverse	CCTGGACTCCGGTCTGA	aPCR primer
12S forward	ACTGCTCGCCAGAACACTAC	aPCR primer
12S reverse	GGTGAGGTTGATCGGGGTTT	aPCR primer
HPRT forward	AGCCAGACTTTGTTGGATTTG	aPCR primer
HPRT reverse	TTTACTGGCGATGTCAATAAG	aPCR primer
TBP forward	CGGCTGTTTAACTTCGCTTC	aPCR primer
TBP reverse	CACACGCCAAGAAACAGTGA	aPCR primer
UBC forward	ATTTGGGTCGCGGTTCTTG	aPCR primer
UBC reverse	TGCCTTGACATTCTCGATGGT	qPCR primer
HIW885-F-BamHI-CMV-SAMMSON-BGH	GAAGGATCCCTGAAGTCGCTAGACATTTGAG	For SAMMSON sub-cloning, Deletion Construction
HIW886-R-XhoI-CMV-SAMMSON-BGH	CAACTCGAGTTTGTTGGTTTGGTTTTTTTGAGACG	For SAMMSON sub-cloning, Deletion Construction
HIW890-SAMMSON-Seq1	AGAGGTGTGGCTAGATCCAAC	For SAMMSON sequencing
HIW891-SAMMSON-Seq2	CAAAACCATTACCTTTAGCCAAG	For SAMMSON sequencing
HIW897-XhoI-RAT-For	GGACTCGAGTAAGGAGTTTATATGGAAACC	For SAMMSON 3'RAT construction
HIW898-RAT-ApaI-Rev	CAAGGGCCCGGCACGAGTGTAGCTAAACCTC	For SAMMSON 3'RAT construction
HIW899-R-XhoI-SAMMSON-del1	CAACTCGAGTTACTCCATTGGAAGGCAGATTATG	For Deletion Construction
HIW900-F-BamHI-SAMMSON-del2	GAAGGATCCGAATGTCTGGACTCTTTCCTTCAC	For Deletion Construction
HIW901-F-BamHI-SAMMSON-del3	GAAGGATCCGTGTATGATATTGCATGAGTTGTC	For Deletion Construction
LNAs	Sequence (5' to 3')	
GapmeR3	GTGTGAACTTGGCT	
GapmeR11	TTTGAGAGTTGGAGGA	
Non-targeting GapmeR	TCATACTATATGACAG	
siRNAs	Sequence (5' to 3')	
siXRN2#1 sense	CAUCGUUAGAGAUUAGGGA	
siXRN2#1 antisense	UCCCUAAUCUCUAACGAUG	
siXRN2#2 sense	GAGUACAGAUGAUCAUGUU	
siXRN2#2 antisense	AACAUGAUCAUCUGUACUC	
siCtrl sense	UGGUUUACAUGUCGACUAATT	
siCtrl antisense	CGUACGCGGAAUACUUCGATT	
siCtrl northern blot	Scramble sequence, undisclosed	
siXRN2 northern blot	GGAAAGUUGUGCAGUCGUATT	
siNEAT1	Pool of siRNAs from siTOOLS	
siNEAT1 long	Pool of siRNAs from siTOOLS	
siCARF	Pool of siRNAs from Dharmacom	
	•	•
Northern blot probes	Sequence (5' to 3')	
mt uro «DNA		

Northern blot probes	Sequence (5' to 3')	
mt_pre-rRNA	GGGTAAATGGTTTGGCTAAGGTTGTCTGGT	
5'-ETS (LD1844)	CGGAGGCCCAACCTCTCCGACGACAGGTCGCCAGAGGACAGCGTGTCAGC	
5'-ITS1 (LD1827)	CCTCGCCCTCCGGGCTCCGTTAATGATC	
ITS-2 (LD1828)	CTGCGAGGGAACCCCCAGCCGCGCA	
RAT Tag	[Biotin]ACGTCTAAGGGTTTCCATATAAACTCCTT	
U2-#1 probe (1-28 nt)	GATCTTAGCCAAAAGGCCGAGAAGCGAT[Biotin]	
SAMMSON (909-933 nt)	GTCACAGGTCACTAGGTGTGGGAAG[Biotin]	