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SUMMARY
Mammalian ribosomal RNA (rRNA)molecules are highly abundant RNAs, decoratedwith over 220 rRNAmod-
ifications. Previous works have shown that some rRNA modification types can be dynamically regulated;
however, how and when the mammalian rRNA modification landscape is remodeled remains largely unex-
plored. Here, we employ direct RNA sequencing to chart the human and mouse rRNA epitranscriptome
across tissues, developmental stages, cell types, and disease. Our analyses reveal multiple rRNA sites
that are differentially modified in a tissue- and/or developmental stage-specific manner, including previously
unannotatedmodified sites.We demonstrate that rRNAmodification patterns can be used for tissue and cell-
type identification, which we hereby term ‘‘epitranscriptomic fingerprinting.’’ We then explore rRNA modifi-
cation patterns in normal-tumor matched samples from lung cancer patients, finding that epitranscriptomic
fingerprinting accurately classifies clinical samples into normal and tumor groups from only 250 reads per
sample, demonstrating the potential of rRNA modifications as diagnostic biomarkers.
INTRODUCTION

Ribosomes are supramolecular complexes responsible for pro-

tein synthesis in all domains of life. Each ribosome consists of

a small and a large subunit, and it is composed of ribosomal pro-

teins (RPs) and ribosomal RNA (rRNA). rRNAs are found at the

functional core of the ribosome, playing key roles in mRNA de-

coding and amino acid polymerization.1 Eukaryotic ribosomes

typically consist of four different rRNA molecules: 18S rRNA,

found in the small ribosomal subunit (40S), and 5S, 5.8S, and

28S rRNA, found in the large ribosomal subunit (60S).2

rRNA molecules are extensively modified. In particular, in hu-

man andmurine ribosomes, the 18S and 28S rRNAs harbormore

than 220 modifications3 that can alter physico-chemical proper-

ties of the rRNA. Consequently, the presence of rRNA modifica-

tions can tweak ribosome function, resulting in enhanced protein
All rights are reserved, including those
synthesis fidelity,4–6 among other features. On the other hand,

loss of specific rRNA modifications can lead to aberrations in

ribosome function7 and decreased translation fidelity.8 In the hu-

man ribosome, 11 different RNA modification types have been

described to date, the most abundant being ribose methylation

(Nm) and pseudouridylation (J), which are largely deposited by

fibrillarin (FBL)9,10 and dyskerin (DKC),11 respectively, guided

by antisense small nucleolar RNAs (snoRNAs).

Historically, ribosomes have been considered as uniform

macromolecular structures that have identical composition

across cell types, tissues, and conditions. This view, however,

has been challenged in the past few years, leading to a change

of paradigm in which ribosomes are now surveyed as dynamic

entities that can be heterogeneous in their composition.12 The

heterogeneity of these structurally different ribosomes can arise

from the use of RP paralogs,13–16 distinct rRNA variants,17,18 or
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Figure 1. rRNA modification patterns are dynamic across tissues and developmental stages

(A) Schematic representation of the workflow used for identification of DM rRNA sites across tissues and developmental stages using direct RNA sequencing

(DRS). All experiments were performed on two biological replicates.

(B) Scatterplots depicting the replicability of SE values computed on 18S rRNA from embryo brain (left), adult brain (middle), and adult heart (right). Pearson r

values are shown on the plots. For all replicability plots, see also Figures S1 and S2.

(C) Scatterplots showing SE value difference from median for embryo brain (left), adult brain (middle), and adult heart (right). Median was calculated from all

samples. DM sites (outside the diagonal) are shown in red. For all pairwise comparisons in all samples, see Figures S3–S6.

(D) Correlation plots showing Pearson r correlations of SE values calculated on DM sites across all samples for 18S and 28S rRNAs. Developmental stages are

shown in themarginal side of the correlation plot, in blue palette colors: embryo (light blue), newborn (blue), adult (dark blue). In the case of testis tissue, embryonic

tissue was not collected; E9.5 whole embryo is used at this position in the correlation plot.

(E) Heatmap of Z-scaled SE values at DM rRNA sites (including unannotated rRNA-modified sites) across tissues and developmental stages. For a heatmap of SE

values of all annotated modification sites across tissues and stages, see Figure S7.

(F) Integrative Genomics Viewer (IGV) snapshot illustrating four DM rRNA sites across tissues and developmental stages. Two sites correspond to annotated

rRNA-modified sites (18S:J1178 and 18S:Um355), whereas the other two (28S:1462 and 18S:1359) are not annotated as rRNA-modified sites. The

18S:m1acp3J1248 site (right) is shown as an example of non-DM site. Embryonic tissues are shown in green, newborn tissues in red, and adult tissues in blue.

Gray tracks represent cDNA runs from the same samples. Positions withmismatch frequency greater than 0.2 are colored (the proportion ofmismatches is shown

as stacked histograms with colors corresponding to each base), whereas those showing mismatch frequencies lower than 0.2 are shown in uniform color (DRS

datasets) or gray (cDNA datasets).

(G) CMC scores along 18S rRNA transcripts, in two independent biological replicates. The CMC score threshold used to define a site asJ-modified is shown as

horizontal dashed line. Known annotated mouse rRNA-modified sites are shown in blue, whereas positions that pass the CMC score threshold, but are not

(legend continued on next page)
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differential rRNAmodifications,19,20 among others.21,22While the

rRNAmodification landscape has been previously characterized

in both murine and human ribosomes, only a handful of studies

have so far characterized the rRNA modification landscape in

the context of different tissues23,24 or developmental stages,25

and most studies and rRNA databases26,27 do not take into ac-

count the tissue and/or cell type of origin28 in their annotations.

Notably, the different types of rRNAmodifications are likely inter-

connected, but detailed maps of all rRNA modification patterns

are lacking. Moreover, we lack understanding of the complex

landscape of individualized ribosomes, which might constitute

an additional layer of heterogeneity.

The long-read sequencing platform developed by Oxford

Nanopore Technologies (ONT) has the potential to revolutionize

our understanding of the epitranscriptome by enabling direct

sequencing of native RNA molecules.29 Direct RNA sequencing

(DRS) permits investigating the transcriptome without the need

for reverse transcription or PCR, and it can in principle capture

any RNA modification that is present in the RNA molecules.30–32

Thus, DRS can detect multiple modification types simulta-

neously along a given RNA molecule, without losing the

sequence context and while preserving isoform information.33

Preliminary works have already shown that rRNA modifications

can be identified using DRS20,32,34–38 and that rRNA modifica-

tions can be altered upon environmental insults such as anti-

biotic exposure.20,39

Here, we employ DRS to study human and mouse rRNA

modification dynamics across tissues, cell types, developmental

stages, and cancer states. We identify rRNA modification ‘‘sig-

natures’’ that are characteristic and distinct across tissues, cell

types, and developmental stages, including several previously

unannotated rRNA sites, which we orthogonally validate and

identify as pseudouridylated residues. Moreover, we show that

upon cancer, these signatures vary, thus constituting promising

biomarkers that could be further exploited by future diagnostic

approaches. Notably, most of the top differentially modified

(DM) sites do not overlap with previously annotated rRNA modi-

fied sites, stressing the importance of employing an agnostic

approach to study rRNA modifications and their dynamics. We

introduce the concept of epitranscriptomic fingerprinting, an

approach that allows for classifying samples based solely on

their rRNAmodification patterns. We propose that this approach

could be used in the future to identify tissue of origin of cancer

samples, as well as to predict cancer.

RESULTS

Nanopore DRS identifies DM rRNA sites across tissues
and developmental stages
Previous works have shown that a subset of 20O-methylated

rRNA sites are differentially methylated during zebrafish and

mouse development23,25 (for full list of annotated human and
annotated as J modified, are shown in red (and numerically labeled). See also F

stages.

(H) CMC scores for the five putative pseudouridylated sites validated by NanoCMC

were calculated by summing the CMC scores of the putatively modified site + 3

nificance of J-modification levels between the sequenced samples (**p < 0.01;
mouse rRNA modifications, see Table S127,28). However,

whether these observations can be validated via orthogonal

methods, and whether additional rRNA modification types—

beyond Nm modifications—might be DM during development

and across tissues remains unexplored. To address this gap,

we applied DRS to study the dynamics of rRNA modifications

in native rRNAmolecules from four distinct mouse organs (brain,

heart, liver, and testis) and across three different developmental

time points (embryo, E15.5; newborn, P3; and adult, P70) (see

STAR Methods), allowing for the detection of virtually all rRNA

modification types (Figure 1A).

To identify dynamic and/or DM rRNA sites across tissues and

developmental stages, we took advantage of ‘‘basecalling error’’

patterns, which are known to occur at modified RNA nucleotides

in DRS datasets,40–43 to then infer differences (differential base-

calling errors) in theirmodification status across tissues anddevel-

opmental stages, as previously described.32 Specifically, we em-

ployed the sum of basecalling errors (mismatches, deletions,

and insertions), which we refer to as ‘‘summed error’’ (SE), and

we compared the per-site SE values across replicates and condi-

tions. First, we found that SE values were highly robust and repli-

cable between biological replicates (r = 0.977–0.996) (Figure 1B;

see also Figures S1 and S2; Tables S2 and S3). Then, to identify

DM rRNA sites, we compared SE values from each sample and

site to the median SE value for each site, calculated from all

sequenced samples (Figure 1A; see also STAR Methods). Only

those rRNA sites that were identified as DM in both biological rep-

licates were kept for downstream analyses (Tables S4 and S5).

This approach revealed a total of 31DM rRNA sites across tissues

and/or developmental stages (Figure 1C; see also Figures S3–S6;

TableS6).Notably, 14of the 31sites identified asDMhadnot been

previously annotated as rRNA-modified sites.

We then systematically compared the SE values for the identi-

fied DM rRNA sites (n = 31) across replicates, stages, and condi-

tions, and we computed the Pearson’s correlation for each pair-

wise comparison (Figure 1D). This analysis revealed that the

adult brain is the tissue with the most distinct rRNA modification

patterns from the set of tissues and stages studied. Afterward,

we examined the SE values at DM rRNA sites, and we clustered

the samples based on their SE values at these sites (Figure 1E).

This approach revealed that the set of DM rRNA sites identified

could be stratified into the following: (1) embryo-enriched, (2) em-

bryo-depleted, (3) adult-enriched, (4) adult brain-enriched, and (5)

other. Visual inspection of rRNAmodification patterns at individual

sites using Integrative Genomics Viewer (IGV) confirmed the

distinct modification patterns across tissues and stages of these

sites (Figure 1F).

Orthogonal validation of previously unannotated rRNA-
modified sites
To confirm that the DM sites identified here were not caused by

SNPs that might be present in some samples but not in others,
igures S8 and S9 for equivalent tracks in additional tissues and developmental

-seq (18S:U890, 18S:U1315, 18S:U1359, 18S:U1400, 28S:1500). CMC scores

downstream positions. One-way ANOVA was used to assess statistical sig-

*p < 0.05; n.s., not significant).
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we also sequenced matched cDNA nanopore sequencing runs

from the same samples (Figure 1F, shown as bottom gray

tracks). Our results show that differential ‘‘errors’’ identified in

DRS datasets are not detectable in cDNA tracks from the

same samples, indicating that the observed SE variations corre-

spond to rRNA modification differences and not to SNPs and/or

alternative usage of rRNA genes across developmental stages

and/or tissues. As a control, we confirmed that we did observe

a consistent and reproducible U-to-C mismatch in both the

RNA and cDNA reads at the position 18S:1248, which harbors

a well-characterized m1acp3J modification known to affect

Watson-Crick base pairing.44,45 Overall, our work identified 31

DM rRNA sites, 14 of which had not been even previously anno-

tated as modified rRNA sites, and they are hereby regarded as

putative rRNA-modified sites (Table S6).

To orthogonally validate some of the putative rRNA-modified

sites, we performed NanoCMC sequencing (NanoCMC-seq)32

on a subset of samples (adult liver, adult brain, and embryo brain)

in two independent biological replicates. We were able to validate

five of the unannotated putative rRNA-modified sites (18S:

U890, 18S:U1315, 18S:U1359, 18S:U1400, and 28S:U1500) via

NanoCMC-seq, demonstrating that these sites were in fact pseu-

douridine residues (Figure 1G; see also Figures S8 and S9). More-

over, using the semi-quantitative ability of NanoCMC-seq, we

confirmed the relative enrichment of these unannotated sites:

18S:J890wasmoreenriched inadult tissues (bothbrainand liver),

whereas 18S:J1315, 18S:J1359, 18S:J1400, and 28S:J1500

were more enriched in brain, especially in the adult brain (Fig-

ure 1H), in agreement with our previous observations (Figures 1E

and 1F). Finally, we examined whether previously unannotated

rRNA modification sites could be assigned to snoRNAs, using

snoRNA prediction tools (see STARMethods). These analyses re-

vealed 3 candidate H/ACAbox snoRNAs (Snora35b, snoRNA-Taf,

and snoRNA-Wwc1), possibly guiding 18S:J1315, 18S:J1359,

and 28S:J1500 modifications, respectively (Figure S10; see also

Table S6).
snoRNA expression levels do not explain differential
rRNA modification levels across tissues
We then examined whether the observed differences in rRNA

modification levelsacross tissuesanddevelopmental stages iden-

tified in this work could be a direct consequence of differences in

the snoRNA levels guiding the different modifications. To assess

this, we examined publicly available datasets that had quantified

small noncoding RNAs across a panel of mouse tissues.46

We then compared the rRNA modification levels with snoRNA

expression levels across adult brain, heart, liver, and testis and

found that in this case, snoRNA levels do not directly correlate

with rRNA modification levels (Figure S11A), in agreement with

previous studies that had examined this question.47 We should

note, however, that from the 17 annotated modification sites

found to beDMacross tissues (Table S6), only 4 had a known an-

notated snoRNA and for which their levels were quantified in the

study (namely, Snord90, Snord93, Snord92, and Snora30).

Indeed, the top DM annotated rRNA sites (18S:J1137,

18S:J1178, 28S:J2596, and 18S:J407) currently have no

snoRNA associated with them (Figure S11B).
4 Molecular Cell 85, 1–14, January 2, 2025
Dynamic rRNA modification patterns during
development can be partially recapitulated in vitro

Our analyses point to multiple rRNA modifications as dynamic

features that are regulated during development, especially in

the brain (Figures 1D and 1E). Considering that cell lines are often

used as models to study epitranscriptomic dynamics, we then

wondered whether this trend could be recapitulated in vitro, by

differentiating stem cells intomature neurons. Tomimic the three

time points used in tissue development (embryo-newborn-

adult), we analyzed the rRNA modification patterns of three

cellular models at different stages of neuronal differentiation:

(1) mouse embryonic stem cells (mESCs), (2) neuronal progenitor

cells (NPCs), and (3) mature neurons (Figure 2A; see also STAR

Methods). Total RNA was then extracted from each cell type,

sequenced using nanopore DRS, and analyzed bioinformatically

using the same approach described above (for raw SE values,

see Tables S7 and S8). We compared DM sites across the brain

stages and cell types, finding that in these comparisons mESCs

had the most distinct modification profile (Figure 2B; see also

Figure S12). Our analyses showed that rRNA modifications are

also DM in in vitro neuronal differentiation systems, with some

DM rRNA sites identified in brain development being mimicked

by the in vitro system (Figure 2C). However, we also found that

some modified rRNA sites were only DM in vitro, whereas others

only in in vivo settings (see Tables S9 and S10). These results

suggest that even though a subset of DM rRNA sites might

display similar trends in vivo and in vitro, findings in these two

systems should not be interpreted interchangeably.

rRNA modification patterns accurately predict tissue
and developmental stage
Tissue and cell-type deconvolution from a given sample are as of

yet unsolved problems,48,49 especially in the field of cancer

research.50 A plethora of novel methods have emerged in the

last few years to address this issue, most of them typically em-

ploying mRNA abundances and/or DNA methylation information

as input.51,52 Here, we find that rRNA modification patterns are

distinct across tissues, cell types, and developmental stages

(Figures 1 and 2). Thus, we wondered whether rRNA modifica-

tion information captured via DRS could be used for deconvolu-

tion of the tissue of origin of a given sample and/or cell-type

identification.

To examine the potential of rRNA modification information for

tissue identification purposes, we first performed an exploratory

principal-component analysis (PCA) using rRNA modification in-

formation from DRS datasets across 4 adult mouse tissues

(brain, heart, liver, and testis), finding that samples form very

distinct clusters based on the tissue type (Figure 3A). Notably,

pseudouridylated sites were largely responsible for the observed

inter-tissue differences (Figures 3A, right and 3B). We then

examined whether rRNA modification information would be suf-

ficient to predict tissue type de novo from unknown samples

based on their rRNA modification patterns (Figure 3C). To this

end, we randomly subset reads to generate 12 pseudoreplicates

for each tissue. The first replicate (flow cell) was used to train the

model, and the second replicate (flow cell) was used to test the

random forest (RF) model (Figure S14A). Afterward, a third

biological replicate was sequenced and used to independently
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C Figure 2. In vitro differentiation models

partially recapitulate rRNA modification dy-

namics observed in the developing brain

(A) Experimental design used for in-parallel analysis

of rRNA modification profiles from in vivo and

in vitro samples.

(B) Correlation plot showing Pearson r correlations

of summed basecalling errors across all samples

for 18S and 28S rRNAs, in biological duplicates for

each cell type/stage. Developmental stages are

shown in the marginal side of the correlation plot, in

blue palette colors: embryo (light blue), newborn

(blue), and adult (dark blue), while cells are shown in

pink palette colors: mESC (light pink), NPC (pink),

neurons (dark pink). Biological replicates are shown

with the same color.

(C) Heatmap of summed error values of discov-

ered DM sites (Z-scaled). The discovered DM

sites cluster by modification pattern (in vivo-

specific, adult brain-specific, in vitro-in vivo

consistent, in vitro-specific, mESC-specific). IGV

tracks show examples of each type of the

discovered sites that are differentially modified.

Annotated modification sites are shown below

the IGV tracks. Positions with mismatch fre-

quency greater than 0.2 are colored, whereas

those showing mismatch frequencies lower than 0.2 are shown in uniform color. For a heatmap of SE values of all annotated modification sites in neuronal

development and differentiation, see Figure S13.
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validate the classifier, finding that the trained model could accu-

rately predict all four tissues (accuracy = 1.00, see Figure S14B).

Similar results were obtained when training classifiers to predict

cell types (Figure S15) and brain developmental stages (Fig-

ure S16) from rRNA modification patterns (accuracy = 1.00).

Finally, we examined what would be the minimal coverage

necessary for accurate tissue classification. To this end, we split

the reads from the independent validation DRS dataset into

pseudoreplicates with decreasing number of reads (1,200,

1,000, 800, 600, 400, 200, and 100 reads), finding that even

100 reads were sufficient for the RF classifier to predict tissue

types with high accuracy based on their rRNA modification pro-

files (Figure 3D).

18S:Um355 ribose methylation is a hallmark of cell
proliferation potential but is not required for neuronal
differentiation
We have shown that several rRNA positions displayed a consis-

tent and progressive increase in their methylation levels with

development (Figures 1C and 1F) as well as upon cellular differen-

tiation (Figure 2C). We evaluated whether the modification status

of certain rRNA-modified sites could be used to assess the prolif-

eration potential of a cell or a tissue sample. To this end, we first

performed PCA on the discovered DM sites of all tissues and

developmental stages (excluding the adult brain; for the full PCA

see Figure S17), and we found that the first principal component

(PC1) accurately separated the samples based on their develop-

mental stage (from left to right: adult, newborn and embryo) (Fig-

ure 4A, left). Analysis of the loadings of the PC revealed

18S:Um355 as one of the main contributors for the separation of

the samples along the PC1 axis (Figure 4A, right). Notably, similar

results were obtained when performing the same analysis on
in vitro samples with different proliferative potential (mESCs,

NPCs, and neurons) (Figure 4B, left), which also showed that

18S:Um355 was one of themain contributing sites for the separa-

tion of the cell lines (Figure 4B, right). Detailed inspection of SE

values (proxy of methylation levels) of 18S:Um355 revealed

increasing methylation rates matching with cellular differentiation,

with mESCs having the lowest SE values and adult brain the

highest ones (Figures 4C and 4D). Notably, 18S:Um355 has

been previously identified as a hypomethylated rRNA-modified

site in lymphoma,47 in agreement with our observations.

To further dissect the role of 18S:Um355 in differentiation

and proliferation, we generated mESCs lacking Snord90, which

is predicted to guide 18S:Um355 modifications.47 Because

18S:Um355 is absent in mESCs (Figure 4C), to confirm that

Snord90�/� lacked the modification of interest, mESCs were

differentiated to NPCs and then to neurons (Figures 4E and 4F,

see also STAR Methods). The Snord90�/� NPCs and neurons

were indistinguishable from their wild-type (WT) counterparts

in terms of cell proliferation, differentiation efficiency, and

morphology. DRS was performed in the Snord90�/� mESCs

and neurons, confirming that the 18S:Um355 mismatch signature

was absent in Snord90�/�-derived neurons (Figure 4G; see also

Figure S18), confirming that Snord90 is indeed responsible for

guiding the methylation at this position. Future work will be

needed to assess the role of 18S:Um355 in protein translation.

Human-matched normal and tumor samples exhibit
distinct rRNA modification profiles
Previous works have reported that the methylation status (Nm

modifications) of some rRNA sites can be dysregulated in can-

cer.47,53,54 Thus, we wondered whether the same could be

observed using DRS, and whether additional modifications
Molecular Cell 85, 1–14, January 2, 2025 5
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Figure 3. Differential rRNA modification patterns can be used to predict tissue types and developmental stages, using a RF classifier
(A) PCA of adult tissues (brain, heart, liver, and testis) for two biological replicates. The DM rRNA sites contributing to the separation of the tissues are shown on

the right panel.

(B) IGV tracks depicting representative examples of tissue-specific DM rRNA sites. Annotated modification sites are shown below the IGV tracks.

(C) Scheme representing the workflow behind the tissue classifier. First, rRNA is sequenced using DRS and analyzed to obtain information about DM rRNA sites.

This information is then used to train a random forest (RF) model, which is then applied to classify tissue types of the testing dataset. For more information, see

Figure S14.

(D) Receiver operating characteristic (ROC) curves showing the performance of the RF tissue classifier when tested on different numbers of reads (100, 200, 400,

600, 800, 1,000. and 1,200 reads). For classifiers predicting cell types and developmental stages, see Figures S15 and S16. AUC stands for area under curve.
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beyond Nm might be dysregulated in cancer samples. To this

end, we sequenced total RNA from matched human normal

and tumor tissue samples, namely, colon, liver, lung, and testis

(Figure 5A; see also Tables S11 for patient information, S12,

and S13 for raw SE values). We discovered that normal and tu-

mor tissues exhibit distinct rRNA modification patterns, espe-

cially in the case of lung and testis (Figure 5B). PCA on the

matched tissues showed that PC1 separated lung and testicular

cancer from their matched normal tissues, while colon and liver

tumorswere harder to distinguish fromnormal tissues (Figure 5C,

upper). Of note, some of the top DM sites that contributed to the

cluster separation (Figure 5C, bottom) overlapped with sites

identified in previous experiments performed on mouse tissues

(Figure 3). We compared the SE values across tumor and normal

tissues (merging different tissues) of the top DM sites, and even

though 18S:J1136 was the only significant DM site, we

observed a general hypomodification trend in cancer tissues

(Figure 5D) for all sites. We then performed cDNA sequencing

to verify that the basecalling errors were not a product of SNPs

but of RNA modifications. Indeed, no basecalling errors were

noticeable in the cDNA runs, suggesting that they correspond

to rRNA modification differences (Figure 5E).

rRNA modification profiles can be used to predict the
tumor/normal state of matched human lung samples
Following our results from several human tumor and normal tis-

sues, we investigated a larger number of matched tumor-normal

human lung tissue samples (n = 20 patients, 40 samples in total;
6 Molecular Cell 85, 1–14, January 2, 2025
see Tables S14 for patient information, S15, and S16 for raw SE

values). The matched samples were obtained from the same in-

dividuals, where normal samples were excised from the

same lobe but from a region that was not affected by the tumor

(Figure 6A; see also STAR Methods). Total RNA was extracted,

and we followed the same workflow as described earlier

(Figure S19A). PCAwas performed on top DM rRNA sites as pre-

viously described, finding a clear separation between normal

and tumor samples in PC1 (Figure 6B), which explains �68%

of the variance of the data. Notably, our results show that

pseudouridylated sites as well as unannotated putative rRNA-

modified sites are largely responsible for the separation of

normal-tumor samples in PC1, with a more modest contribution

of Nm-modified sites. Representative IGV snapshots of DM

rRNA sites are shown in Figure 6C, including a site that is more

modified in tumor samples (18S:J296) and largely hypomodified

in normal matched samples, as well as the opposite trend in

which the modified site is largely absent or with significantly

decreased modification stoichiometry in tumor samples (e.g.,

18S:1315), relative to the matched normal samples. We should

note that epitranscriptomic fingerprinting could not distinguish

between stages I and II (Figure S20A) or whether the patients

developed metastases or not (Figure S20B).

We then wondered whether the performance trained and

tested new RF classifiers, using as input only the top 20 DM an-

notated Nm sites or J sites, and compared the performance of

the models with our ‘‘agnostic’’ model that does not require prior

knowledge of annotated sites, which employs the top 20 DM
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Figure 4. 18S:355 methylation status is inversely correlated with the cells’ proliferation potential

(A) PCA analysis done on mouse tissue samples (excluding the adult brain). Values used for the PCA are SE of discovered DM sites.

(B) PCA done on the in vitro samples (mESCs, NPCs, and neurons). Values used for the PCA are SE of discovered DM sites. The sites contributing to cluster

separation the most are colored red (annotated sites) and blue (unannotated sites); the remaining sites are colored gray (right).

(C) IGV tracks showing the mismatch pattern of 18S:U355 in mESCs, NPCs, and neuronal cells, as well as in embryonic, newborn, and adult tissues.

(D) Summed error values for 18S:355 for mouse tissue and cell line samples.

(E) Schematic representation of Snord90�/� cell line generation and differentiation to neurons.

(F) WT and Snord90�/� NPCs and neurons. Scale bars, 400 mm.

(G) IGV tracks showing the mismatch pattern of 18S:U355 in WT and Snord90�/� mESCs and neurons. For modification levels of all annotated rRNA sites in WT

and Snord90�/� mESCs and neurons, see Figure S18.
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sites regardless of the rRNA modification annotations (Fig-

ure S21). We found that the separation of samples (visualized

in their two PC1s) (Figure S21A) and classifier performance

was significantly decreased when relying only on annotated

Nm sites or annotated J-modified sites, compared with using

all sites—including potentially unannotated ones (Figure S21B).

Finally, we wondered what would be the minimal number of

reads needed for accurate classification of a sample into normal

or tumor. To this end, an RF classifier was trained on the training

data set and internally validated on the test set, and then queried

to predict the normal/tumor state of the validation dataset, which

had not been used for training/testing themodel (Figure S19; see

also STAR Methods). We randomly subset the testing dataset

samples to contain 100, 250, 500, 700, 1,000, and 1,200 reads,

to identify the minimum sequencing depth (number of reads)

necessary for successful tumor prediction. After running the

classifier on the subsets with different sequencing depths, our
results showed that 250 rRNA reads per sample were enough

to result in an area under the curve (AUC) of 0.97 (Figure 6D).

Altogether, our results point to rRNA modifications as promising

and powerful biomarkers that could be used to identify disease

and/or classify and stratify patient samples in the near future,

thus opening a portfolio of additional biomarkers and

sequencing methodologies that could be used for cancer identi-

fication and diagnosis.

DISCUSSION

In the last few years, the need for cell-type identification from

sequencing information has emerged.55 While mRNAs are typi-

cally used for cell-type identification and classification,56 rRNAs

are routinely discarded from the library preparation and data

analysis,57–59 as they are generally considered non-informative

RNA molecules. In contrast with this view, it has been recently
Molecular Cell 85, 1–14, January 2, 2025 7
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Figure 5. rRNA modification profiles differ between matched normal and human tumor tissues

(A) Scheme of tissues used for sequencing.

(B) SE values for all rRNA sites in 18S (top) and 28S (bottom) inmatched colon, liver, lung, and testis normal (y axis) and tumor (x axis) samples from human donors.

The outliers are labeled and shown as red dots.

(C) PCA performed on matched human samples. The values used for the PCA are discovered DM rRNA sites. The loadings are shown below.

(D) Average SE values across all cancer and normal samples (n = 4) for the top 7 discovered sites. Error bars represent standard errors. Significancewas assessed

using an independent t test (*p < 0.05).

(E) IGV tracks of RNA (top) and cDNA (bottom) of matched human cancer and normal tissues for the top 7 discovered DM sites. Annotated modification sites are

shown below the IGV tracks and left blank if no annotated site is present in the shown region. Created with BioRender.com.
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shown that ribosomes, previously thought to be largely invariant,

can be heterogeneous in their composition,13,14,17,60 including

their rRNA modifications.23,25,61–63 However, most studies

performed to date have largely relied on methods that can only

capture one RNA modification type at a time, typically 20-O-

methylations,23,25,53,62,64 and have largely limited their analyses

to known annotated rRNA sites, thus providing an incomplete

picture of rRNA modification dynamics.

Here, we attempted to bridge this gap by investigating

whether rRNA modification patterns can be used as a source

of information for tissue-of-origin identification and tumor versus

normal sample classification. To this end, we employed nano-

pore DRS to create comprehensive maps of mammalian rRNA

modification dynamics across tissues and developmental

stages, without restricting the analysis to previously annotated

sites or sites with a given RNA modification type. Through this

agnostic approach, we demonstrated that rRNA modification
8 Molecular Cell 85, 1–14, January 2, 2025
patterns display tissue-, cell-type-, developmental stage- and,

remarkably, even disease state-specific fingerprints that are

easily readable and identifiable using DRS. Notably, we showed

that in addition to identifying that some 20-O-methylations are

DM, in agreement with previous works,23,24 we found that other

rRNA modification types were also DM, with pseudouridylated

residues being the most prominent DM rRNA modification type

across tissues in all datasets and developmental stages exam-

ined (Figures 3B and 6B).

Surprisingly, our analyses also revealed a set of DM rRNA sites

at previously unannotated positions (Figure S22; see also

Table S17), suggesting that the list of known rRNA-modified sites

is largely incomplete and that rRNA modifications are not ‘‘spe-

cies-specific’’ but rather display additional levels of complexity,

including tissue, cell-type, and developmental stage specificity.

We then validated five of the putative rRNA-modified sites as

pseudouridylated sites in mouse, using NanoCMC-seq32

http://BioRender.com
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Figure 6. rRNA modification patterns can be used to predict normal/tumor state of lung samples

(A) Scheme depicting the sample collection and workflow for training and testing the RF model used for predicting normal/tumor state of lung samples.

(B) PCA performed onmatched lung samples. The values used for the PCA are the top 20 discovered DM rRNA sites. The loadings are shown in the bottom panel.

(C) IGV snapshots of the DM rRNA sites in normal and tumor lung tissues. Annotated modified rRNA sites are shown below the IGV tracks.

(D) RF normal/tumor classifier performance when tested on different numbers of reads (100, 250, 500, 750, 1,000, and 1,200 reads). The area under the curve

(AUC) for each coverage threshold is also shown. See also Figure S19B. Created with BioRender.com.
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(18S:U890, 18S:U1315, 18S:U1359, 18S:1400, and 28S:1500,

see Figures 1G, 1H, S8, and S9), confirming that the differential

basecalling error signatures captured by DRS were indeed

coming from DM pseudouridines. The differential modification

patterns observed using DRS (Figure 1E) were partially repro-

duced by the NanoCMC-seq experiment (Figure 1H). Further-

more, we identified three candidate H/ACA box snoRNAs corre-

sponding to three unannotated pseudouridylation sites, one of

which is the orphan snoRNA Snora35b (Figure S10; Table S6).

We should point out that 18S:J1315 has also been recently

identified in HEK cells,65 further supporting our predictions. Alto-

gether, our results not only contribute to completing the picture

of rRNAmodifications in mouse and human but also highlight the

potential of DRS-based approaches for the identification of un-

annotated rRNA modifications in previously unexplored biolog-

ical settings such as in species for which we lack annotated

rRNA modifications.66

Our analyses revealed that 18S:Um355 is differentially methyl-

ated during development (Figure 4A), upon in vitro cell differenti-

ation (Figure 4B), and in cancer (Figure 6B). We propose that the

methylation status of 18S:Um355 may be used as a proxy to

assess the proliferation rate of cells of origin, with hypomethyla-

tion being correlated with high proliferation and higher methyl-

ation levels with more differentiated cells (Figures 4A–4D). With

regard to the snoRNA guiding 18S:Um355, early works had

initially designated this site an ‘‘orphan,’’ as it lacked a known

specific snoRNA,27,28 but more recent works postulated that

SNORD90 could be responsible for 18S:354 (corresponding to
18S:355 in mouse) methylation in human cells.47 Subsequent

studies overexpressing SNORD90 found that this snoRNA could

regulate neuregulin 3 (NRG3) mRNA levels and asserted that

SNORD90 had no known targets in the rRNA and thus should

be considered an orphan snoRNA.67 In this work, we demon-

strate that Snord90 is indeed responsible for guiding

18S:Um355 modifications in murine systems, and thus

18S:Um355 should not be further considered as an orphan

rRNA site (Figures 4E–4G).

We then examined whether rRNA modification profiles would

be altered in cancer, and whether these alterations could be

used for sample classification. Notably, previous works had

already reported that certain 20-O-methylated rRNA sites were

differentially methylated in specific cancer types7,19,21,47,53,68,69;

however,whether other rRNAmodification types areDM in cancer

remained largely unexplored. We employed DRS to survey the

rRNA modification landscape of 20 matched tumor-normal lung

cancer human samples (Figure 6A), and we identified the most

variable rRNA sites in terms of modification status. PCA showed

that most of the variance of the data, explained by PC1, largely

separated the samples into twomain clusters, which largely corre-

spond to ‘‘normal’’ and ‘‘tumor’’ groups (Figure 6B). Our analysis

showed that rRNAmodification levels typically decrease in cancer

samples, relative to normal matched samples, with the exception

of 18S:J296, which we found was modified at higher levels in

cancer tissues when comparedwith their correspondingmatched

normal tissues (Figures 6B and 6C). We should note that previous

works have also examined rRNA modification patterns in
Molecular Cell 85, 1–14, January 2, 2025 9
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cancer23,25,53,62,64; however, they largely focused only previously

annotated sites, and only one modification type at a time,

therefore limiting the amount of new information that could be

elucidated. Indeed, we found that top dysregulated sites were in

fact unannotated sites, which would have been missed by other

approaches restricting the analyses to annotated rRNA modi-

fied sites.

Using an RF classifier trained on rRNA modification informa-

tion, we showed that the trained models can accurately predict

tissue (Figures 3A and S14), cell type (Figure S15), develop-

mental stage (Figure S16), and disease state (Figures 6D and

S19), with as few as �250–500 rRNA reads being sufficient for

accurate cell-type prediction. Since the average output of a

DRS run performed on a MinION flow cell is around 1–2 million

reads when using RNA002 kit chemistry (�5 M reads with latest

RNA004 chemistry),31,70 we speculate that dozens to hundreds

of samples could be pooled in a single MinION flow cell, once

multiplexing of larger number of samples becomes available

for DRS,71 thus greatly decreasing the sequencing costs per

sample.

We envision that the epitranscriptomic rRNA fingerprinting

approach described here has the potential to be brought to the

clinic, for example, applied in the field of early cancer detection.

This practice could become especially relevant in the context of

screening high-risk populations for diseases such as lung can-

cer, in which patients are typically diagnosed at late stages (III

and IV), often making the disease intractable by surgery or other

medical approaches. Indeed, our work demonstrates that rRNA

modification information is sufficient to classify samples into

normal or ‘‘cancer’’ already in lung cancer patients diagnosed

with stage I and II tumors (Table S14), demonstrating that sam-

ples from early cancer stages already present altered rRNA

modification patterns that can be captured by epitranscriptomic

fingerprinting, and providing a strong proof of concept of the po-

tential of rRNAmodifications to become powerful biomarkers for

sample classification and cancer diagnosis. On the other hand,

epitranscriptomic fingerprinting could also be useful to guide in-

traoperative decisions in the future. Of note, intraoperative nano-

pore sequencing of brain tumors has already been reported in

the literature, with sequencing results contributing to the diag-

nosis and impacting surgical decisions in real time.72,73 Future

work will be needed to disentangle, examine and validate

whether epitranscriptomic fingerprinting can in fact be applied

to clinical settings.

Paradoxically, the high abundance of rRNA molecules, typi-

cally surveyed for decades as a ‘‘problem’’ in RNA-seq libraries,

may in fact become a major strength for sample and/or cell-type

classification especially in low-input scenarios, such as plasma

samples. It is yet to be determined whether epitranscriptomic

rRNA fingerprinting may be applicable to plasma samples, in

which reads arising from cancer cells are possibly much less

abundant and rRNA molecules highly fragmented.

Limitations of the study
While our work demonstrates that rRNAs can act as a source of

ribosome heterogeneity across cell types, tissues, develop-

mental stages, and disease states, the mechanism whereby

this diversity is generated remains unclear. Differential snoRNA
10 Molecular Cell 85, 1–14, January 2, 2025
expression has been proposed as a potential source to explain

this heterogeneity; however, our re-examination of this possibil-

ity (Figure S11) aswell as by previouswork47,74 argue against this

hypothesis. Alternatively, this heterogeneity could be mediated

by uncharacterized RNA modification-related proteins (RMPs),

which may or may not be guided by snoRNAs, that would

show restricted expression patterns, contributing to the final dif-

ferential modification levels observed across tissues, cell types,

developmental stages, and disease states.

On the other hand, the functional consequences of ribosomal

rRNA modification diversity also remain unclear. Mechanisti-

cally, previous works using cellular knockout models have

shown that depletion of specific snoRNAs leads to differences

in ribosome footprints,24 arguing in favor of the ‘‘selective trans-

lation’’75,76 hypothesis. Under this model, specialized ribosomes

generated through differential rRNA modification patterns would

be responsible for fine-tuning translation efficiency via preferen-

tial translation of a given subset of transcripts.Whether these ob-

servations, reported for the 28S:U3904 rRNA modification

(guided by SNORD52), are generalizable to other differential

modified rRNA sites is yet to be determined.

Finally, it is still unclear what is theminimum tumor cell content

required for accurate detection of cancer using epitranscrip-

tomic rRNA fingerprinting. Future work will be needed to further

expand this work into larger cohorts, as well as in different can-

cer subtypes.
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has been deposited into ENA, under accession number ENA:

PRJEB81662 (study ID ERP165462) for the mouse data, while fastq files

for both mouse and human data have been deposited into GEO under

GEO: GSE264668. Fastq files from cDNA and NanoCMC-seq runs
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sive list of the datasets generated and used in this work is found in

Table S18. Raw SE values for mouse tissues and cells are found in

Tables S2, S3, S7, S8, S12, S13, S15, and S16 for matched human

normal-tumor samples. Raw microscopy images have been deposited
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d The code is publicly available as of the date of publication. The code

used for the analysis of the data presented in this work has been
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fingerprinting and Zenodo, with DOI https://dx.doi.org/10.5281/zenodo.
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Dynamic interplay between RPL3- and RPL3L-containing ribosomes

modulates mitochondrial activity in the mammalian heart. Nucleic Acids

Res. 51, 5301–5324. https://doi.org/10.1093/nar/gkad121.

15. Jiang, L., Li, T., Zhang, X., Zhang, B., Yu, C., Li, Y., Fan, S., Jiang, X., Khan,

T., Hao, Q., et al. (2017). RPL10L Is Required for Male Meiotic Division by

Compensating for RPL10 during Meiotic Sex Chromosome Inactivation in

Mice. Curr. Biol. 27, 1498–1505.e6. https://doi.org/10.1016/j.cub.2017.

04.017.

16. Guimaraes, J.C., and Zavolan, M. (2016). Patterns of ribosomal protein

expression specify normal and malignant human cells. Genome Biol. 17,

236. https://doi.org/10.1186/s13059-016-1104-z.

17. Parks, M.M., Kurylo, C.M., Dass, R.A., Bojmar, L., Lyden, D., Vincent, C.T.,

and Blanchard, S.C. (2018). Variant ribosomal RNA alleles are conserved

and exhibit tissue-specific expression. Sci. Adv. 4, eaao0665. https://doi.

org/10.1126/sciadv.aao0665.

18. Kurylo, C.M., Parks, M.M., Juette, M.F., Zinshteyn, B., Altman, R.B.,

Thibado, J.K., Vincent, C.T., and Blanchard, S.C. (2018). Endogenous

rRNA Sequence Variation Can Regulate Stress Response Gene

Expression and Phenotype. Cell Rep. 25, 236–248.e6. https://doi.org/

10.1016/j.celrep.2018.08.093.

19. Jansson, M.D., H€afner, S.J., Altinel, K., Tehler, D., Krogh, N., Jakobsen, E.,

Andersen, J.V., Andersen, K.L., Schoof, E.M., Ménard, P., et al. (2021).

Regulation of translation by site-specific ribosomal RNA methylation.

Nat. Struct. Mol. Biol. 28, 889–899. https://doi.org/10.1038/s41594-021-

00669-4.

20. Delgado-Tejedor, A., Medina, R., Begik, O., Cozzuto, L., Ponomarenko, J.,

and Novoa, E.M. (2023). Native RNA nanopore sequencing reveals anti-

biotic-induced loss of rRNA modifications in the A- and P-sites. Preprint

at bioRxiv. https://doi.org/10.1101/2023.03.21.533606.

21. Pauli, C., Liu, Y., Rohde, C., Cui, C., Fijalkowska, D., Gerloff, D., Walter, C.,

Krijgsveld, J., Dugas, M., Edemir, B., et al. (2020). Site-specific methyl-

ation of 18S ribosomal RNA by SNORD42A is required for acute myeloid

leukemia cell proliferation. Blood 135, 2059–2070. https://doi.org/10.

1182/blood.2019004121.

22. Miller, S.C., MacDonald, C.C., Kellogg, M.K., Karamysheva, Z.N., and

Karamyshev, A.L. (2023). Specialized Ribosomes in Health and Disease.

Int. J. Mol. Sci. 24, 6334. https://doi.org/10.3390/ijms24076334.

23. Hebras, J., Krogh, N., Marty, V., Nielsen, H., and Cavaillé, J. (2020).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Mouse tissues (whole embryo,

brain, heart, liver, testis)

PRBB animal facility https://www.prbb.org/ciencia.php

RNA isolated from human

normal-tumor matched tissues

(colon, lung, testis, liver)

Origene https://www.origene.com/

RNA isolated from human

normal-tumor matched

lung tissues

Lungbiobank Heidelberg https://www.thoraxklinik-heidelberg.de/

Chemicals, peptides, and recombinant proteins

KnockOut� DMEM Thermo Cat#10829018

GlutaMAX� 100X Thermo Cat#35050061

Sodium Pyruvate 100X Thermo Cat#11360070

Pen/Strep 100X Thermo Cat#15140122

LIF 107U 10000X Milipore Cat#ESG1107

b-mercaptoethanol 1000X Sigma Cat#M-7522

0.1% Gelatine Milipore Cat#ES-006-B

DMEM/F12 GlutaMAX Gibco Cat#10565018

Neurobasal medium Gibco Cat#21103049

B27 without Vitamin A supplement Gibco Cat#12587010

N2 supplement Gibco Cat#17502048

Noggin PeproTech Cat#120-10C

SB431542 Tebu-Bio Cat#04-0010-05

0.001% Poly-L-Ornithine Sigma Cat#A-004-M

Laminin Merck Cat#L2020

bFGF Stem Cell Technologies Cat#78003.1

EGF Thermofisher Cat#PMG8041

TrypLE Express Thermofisher Cat#12605036

TRIzol Life Technologies Cat#15596018

Buffer RLT Qiagen Cat#79216

Buffer RWT Qiagen Cat#1067933

Buffer RPE Qiagen Cat# 1018013

Non-Essential Amino Acids Solution Thermo Cat# 11140050

DAPT Selleck Cat# S2215

BDNF Stem Cell Technologies Cat#78005.1

Cas9 TrueCut protein Invitrogen Cat# A36946

RNaseOUT Invitrogen Cat#10777019

SUPERase,In Life Technologies Cat#AM2694

Turbo DNase Life Technologies Cat#AM2239

RNA XP beads Beckman Coulter Cat#A63987

Poly(A)-tailing buffer NEB Cat#B0276SVIAL

10 mM ATP NEB Cat#B0756AVIAL

Maxima RT buffer ThermoFisher Cat#EP0751

Maxima reverse transcriptase ThermoFisher Cat#EP0751

Maxima H Minus RT ThermoFisher Cat#EP0742

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

NEBNext Quick Ligation Reaction Buffer NEB Cat#B6058S

T4 DNA Ligase NEB Cat#M2200L

RNase Cocktail Enzyme Mix ThermoFisher Cat#AM2286

LongAmp Taq Master Mix NEB Cat#M0287S

Ultra II End-prep reaction buffer NEB Cat#E7647A

Ultra II End-prep enzyme mix NEB Cat#E76468

Blunt/TA ligase master mix NEB Cat#M0367S

CMC ChemCruz Cat# sc-255354

T4 Polynucleotide Kinase NEB Cat# M0201S

RNasin Ribonuclease Inhibitor Promega Cat# N2511

Critical commercial assays

Nanopore dRNA sequencing kit Oxford Nanopore Technologies SQK-RNA002

Nanopore cDNA sequencing kit Oxford Nanopore Technologies SQK-DCS109

Barcoding Expansion Kit Oxford Nanopore Technologies EXP-NBD104

AllPrep RNA/DNA/miRNA Universal Kit Qiagen Cat#80224

Agilent RNA 6000 Nano Kit Agilent Cat#5067-1511

RNeasy Kit Qiagen Cat#74104

Qubit RNA High Sensitivity Invitrogen Cat#Q32852

Qubit 1X dsDNA High Sensitivity Invitrogen Cat#Q33230

Zymo RNA Clean and Concentrator Zymo Cat#R1015

Deposited data

Raw fast5 files This paper PRJEB81662

Fastq files and processed files This paper GSE264668, GSE280137

Raw microscopy images This paper https://doi.org/10.17632/d53b53x3vt.1

Experimental models: Cell lines

Mouse embryonic stem cells (E14tg2A) Tissue Engineering Unit, CRG https://www.crg.eu/en/programmes-groups/

tissue-engineering-unit-0

Experimental models: Organisms/strains

Mouse: C57BL/6J Charles River Cat#000664

Oligonucleotides

Original ONT VNP: 50-/5Phos/ACTTGC

CTGTCGCTCTATCTTCTTTTTTTTTTTT

TTTTTTTTVN-30

Oxford Nanopore Technologies N/A

CompA: 50-GAAGATAGAGCGACA

GGCAAGTA-30
Begik et al.32 N/A

BC1, Oligo A: 5’-/5Phos/GGCTTCTTC

TTGCTCTTAGGTAGTAGGTTC-3’

Smith et al.77 N/A

BC1, Oligo B: 5’-GAGGCGAGCGGTCAA

TTTTCCTAAGAGCAAGAAGAAGCCTTTT

TTTTTT-3’

Smith et al.77 N/A

BC2, Oligo A: 5’-/5Phos/GTGATTCTCG

TCTTTCTGCGTAGTAGGTTC-3’

Smith et al.77 N/A

BC2, Oligo B: 5’-GAGGCGAGCGGTCA

ATTTTCGCAGAAAGACGAGAATCACT

TTTTTTTTT-3’

Smith et al.77 N/A

BC3, Oligo A: 5’-/5Phos/GTACTTTTCT

CTTTGCGCGGTAGTAGGTTC-3’

Smith et al.77 N/A

BC3, OligoB: 5’-GAGGCGAGCGGTCA

ATTTTCCGCGCAAAGAGAAAAGTAC

TTTTTTTTTT-3’

Smith et al.77 N/A
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BC4, Oligo A: 5’-/5Phos/GGTCTTCGC

TCGGTCTTATTTAGTAGGTTC-3’

Smith et al.77 N/A

BC4, Oligo B: 5’-GAGGCGAGCGGTCA

ATTTTAATAAGACCGAGCGAAGACC

TTTTTTTTTT-3’

Smith et al.77 N/A

Software and algorithms

Master of Pores Cozzuto et al.71 https://github.com/biocorecrg/MOP2

Snoscan Lowe and Eddy78 https://lowelab.ucsc.edu/snoscan/

SnoGPS Schattner et al.79 https://lowelab.ucsc.edu/snoGPS/

STAR Dobin et al.80 N/A

Code used in this study This paper Zenodo: https://dx.doi.org/10.5281/zenodo.14027027

Other

6-well plates Thermo Cat# 140675

Nunclon Delta surface 12-well plates Thermo Cat#150628

Polytron PT 1200 E Homogenizer Polytron N/A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and culture
Mouse Embryonic Stem Cells (mESC E14tg2A) were cultured in 10% FBS mESC complete medium: KnockOut� DMEM (Thermo,

#10829018), MEM Non-Essential Amino Acids Solution, 100X (Thermo, #11140050), GlutaMAX� 100X (Thermo, #35050061), So-

dium Pyruvate 100X (Thermo, #11360070), Pen/Strep 100X (Thermo, #15140122), LIF 107U (Millipore, #ESG1107) 10000X, b-mer-

captoethanol 1000X (Sigma, #M-7522, 0,22mm filtered) on 0,1% Gelatine (Millipore #ES-006-B) coated 6-well plates (Thermo,

#140675).

Mouse Neuronal Progenitor Cells (mNPCs) were derived from the mESCs with Pro-Neural medium 50% DMEM/F12 GlutaMAX

(Gibco, #10565018), 50% Neurobasal medium (Gibco, #21103049), 1% B27 without Vitamin A supplement (Gibco, #12587010),

0.5% N2 supplement (Gibco, #17502048), 1% GlutaMAX (Gibco, #35050-061), 1% Pen/Strep (Thermo, #15140-122) supplemented

with 100 ng/ml Noggin (PeproTech, #120-10C) and 20 mM SB431542 (Tebu-Bio, #04-0010-05). mNPCs were cultured in Nunclon

Delta surface (Thermo, #150628) 12-well plates coated with 0.001% Poly-L-Ornithine (Sigma, #A-004-M) and 2 mg/ml Laminin

(Merck, #L2020) in Pro-neural medium supplemented with Non-Essential Amino Acids Solution (Thermo, #11140050), 10 ng/ml

bFGF (Stem Cell Technologies, #78003.1) and 10 ng/ml EGF (Thermofisher, #PMG8041). mNPCs were split every 2-3 days with

TrypleExpress (Thermofisher, #12605036) for 3 minutes at RT and seeded at �250.000 cells per well.

Mouse models
All adult (P70) C57BL6/J mice were euthanized using CO2, and newborn (P3) mice using decapitation. All embryonic tissues were

collected at day E15.5, except for whole embryos that were collected at day E9.5. Tissues were quickly excised and snap-frozen

in liquid nitrogen, and stored at -80�C until further use. All mice used in this study were males.

Animal experimentation was carried out in compliance with EU Directive 86/609/EEC and Recommendation 2007/526/EC

regarding the protection of animals used for experimental and other scientific purposes, enacted under Spanish law 1201/2005,

and also approved by the institutional ethics committee. Mice used in this study were of C57BL/6J strain background, obtained

from Charles Rivers (strain #000664). All mice were raised on a defined control diet (Special Diets Services, RM1 (P), 801151)

and were housed in cages at a temperature of 22–24�C, had access to food and water ad libitum and were maintained on a

12:12 hour light-dark artificial lighting cycle, with lights off at 19:00.

Human subjects
Total RNA from human matched tumor and normal tissues were purchased from OriGene (CR560965 - colon tumor; CR560964 -

colon normal; CR560583 - lung tumor; CR560571 - lung normal; CR562186 - testis tumor; CR562185 - testis normal; CR559730 -

liver tumor; CR561794 - liver normal). The matched samples were collected from the same patients, and each tissue type was

collected from a different patient. All four patients were male, aged 80, 66, 32 and 66. All the normal tissues were characterized

as ‘‘within normal limits’’ during pathology verification. Colon tumor sample was characterized as adenocarcinoma of colon, and

graded as G2 (moderately differentiated) following the American Joint Committee on Cancer (AJCC) grading system. Lung tumor

sample was characterized as adenocarcinoma of lung, and graded as G3 (poorly differentiated). Testicular tumor sample was char-

acterized as seminoma, and the differentiation status was not reported. Liver tumor sample was characterized as hepatocellular, and

graded as G3 (poorly differentiated). See also Table S11.
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For the matched normal-tumor lung samples, we collected RNA from 20 lung adenocarcinoma patients, consisting of 9 females

and 11males aged 48 to 80 years. The tissue samples were provided from fresh frozen tissue by Lungbiobank Heidelberg, member of

the tissue bank of the National Center for tumor diseases (NCT), Germany, in accordance with the regulations of the tissue bank and

the approval of the ethics committee of Heidelberg university (S-270/2001, S-568/2023). Tissues were snap-frozen within 30minutes

after resection and stored at -80�C until the time of analysis. For nucleic acid isolation 10 - 15 tumor cryosections (10 - 15 m each)

were prepared for each patient. The first and the last sections in each series were stained with hematoxylin and eosin (H&E) and were

reviewed by an experienced lung pathologist to determine the proportions of viable tumor cells. Only samples with a viable tumor

content ofR 50%were used for subsequent analyses. All histopathological diagnoses were made according to the 2015WHO clas-

sification for lung cancer by at least two experienced pathologists. Tumor stage was designated according to the 7th edition of the

UICC tumor, node, and metastasis. The cohort is described in Table S14.

Human lung cancer samples were obtained from Lung Biobank Heidelberg, a member of the Biobanks of the National Center of

Tumor diseases Heidelberg. All tumors (andmatching lung tissue) were derived from patients with lung adenocarcinoma undergoing

primary tumor resection. Tumor cell content was verified before analysis. Approval was obtained by the Ethics Committee of Heidel-

berg University Hospital (S-568/2023).

Sequencing and analysis of rRNA modifications using DRS in human samples was approved by the Ethics Committee (CEEA) of

the Parc de Salut Mar, under the project proposal 2022/10250/I, titled ‘Development and implementation of nanopore native RNA

sequencing technologies for the diagnosis and classification of cancer samples’.

METHOD DETAILS

Total RNA extraction from mouse tissues
Tissues were homogenized in TRIzol (Life Technologies, 15596018) using the Polytron PT 1200 E hand homogenizer in pulses of

10 seconds at maximum speed until thoroughly homogenized. Aqueous phase containing RNAwas separated by adding chloroform

and spinning the samples down for 15 minutes at 12.000 x g at 4 �C. Total RNA was precipitated by adding isopropanol, and then

washed with 75% ethanol. Purity and concentration were measured using the NanoDrop spectrophotometer.

Total RNA extraction from human lung tissues
RNA was isolated using the AllPrep RNA/DNA/miRNA Universal Kit (Qiagen, 80224) using the manufacturer’s instructions. Frozen

tumor cryosections were homogenized with the TissueLyser mixer-mill disruptor (2 x 2 min, 25 Hz, Qiagen, Hilden, Germany). The

quality of total RNA was assessed with an Agilent 2100 Bioanalyzer and Agilent RNA 6000 Nano Kit (Agilent Technologies, Boeblin-

gen, Germany). The median RIN of the investigated cohort was 8.1 (see Figure S23).

Separation of long and short RNA fractions
Approximately 1.5 mg of each RNA extract was mixed with 3.5X Buffer RLT (Qiagen, #79216) and then 1X 70% ethanol was added to

the mix. The samples were transferred to an RNeasy Mini Spin Column (Qiagen, #74104) and centrifuged at 8000 x g for 30 s at RT.

The column, containing the long RNA fraction, was kept at RT. The flowthrough, containing the short RNA fraction, was then mixed

with 0.65X 100% ethanol, loaded on an RNeasy MinElute Spin Column (Qiagen, #74204), and centrifuged at 8000 x g for 30 s at RT.

The flowthrough was discarded and the columnwaswashed first with 700 ml of buffer RWT (Qiagen, #1067933), secondwith 500 ml of

buffer RPE (Qiagen, #1018013) and thirdwith 500 ml 80%ethanol. After the threewashes, the empty columnwas centrifuged for 5min

at 8000 x g with the lid open to remove any residual ethanol. Finally, the short RNA fraction was eluted with 17 ml of RNase-free water.

To recover the long RNA fraction, the RNeasy Mini Spin Column was washed twice with 500 ml of buffer RPE. After washing, the col-

umn was centrifuged at full speed for 1 min, and then the long RNA fraction was eluted with 30 ml of RNase-free water. Both long and

short RNA fractions were quantified by Qubit Fluorometric Quantitation and the RNA electropherogram was obtained using Agilent

4200 TapeStation.

Differentiation of mouse NPCs to neurons
For neuronal differentiation, mNPCs at�500.000 cells per well were inducedwith neuronal differentiationmedium,which consisted in

Pro-Neural medium supplemented with Non-Essential Amino Acids Solution (Thermo, #11140050), 10 mM DAPT (Selleck, #S2215),

40 ng/ml BDNF (StemCell Technologies, #78005.1) for 7 days, replacing 50%of themedium every 2-3 days. A step-by-step protocol

for differentiating mouse NPCs to neurons can be found in protocols.io (https://doi.org/10.17504/protocols.io.6qpvr4oo2gmk/v1).

mESC Snord90 knockout generation
The Snord90 knockout mES cell line was generated using CRISPR-Cas9 editing. ES-E14TG2a mES cells were cultured in regular

10% FBS + LIF conditions on gelatin coated plates. The guides were designed to target a 38 bp-long sequence in the Rc3h2

host gene, located in the intron coding for Snord90. The guide sequences used for CRISPR editing were the following: gRNA

upstream: ATTTCATAGGGCAGATTCTG; gRNA downstream: ATTATGAAATCTGAAGACAC. 200.000 mESCs were electroporated

using the Neon Electroporation System with a mix of 1.5 pmol of each gRNA and 0.1 mg Cas9 TrueCut protein (Invitrogen,

#A36946). A GFP plasmid was used as electroporation control. 48h later, cells were sorted using the regular sorting conditions:
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80 mmnozzle, pressure of 120 psi and DAPI as viability dye on a BD Influx cell sorter. 100 clones were retrieved and PCR screened for

the 38 bp deletion using the following primer pairs: forward: TTGTACCCTTCCTGTCTCAGAA, reverse: TTAGCAGGGTCACC

AGTTCG. 8 clones were validated as successfully edited, carrying the 38 bp deletion.

Direct RNA nanopore library preparation
All nanopore sequencing runs were performed using the MinION sequencer (flow cell type: FLO-MIN106, sequencing kit:

SQK-RNA002). DNase treatment was performed bymixing 2 mg of total RNA per sample with 5 mL of DNase buffer (Life Technologies,

#AM2239), 1 mL of RNaseOUT (Invitrogen, #10777019) and 2 mL of Turbo DNase (Life Technologies, #AM2239) in a total volume of

50 mL. The digestion was done by incubating the samples for 10 minutes at 37 �C. The RNA was cleaned using RNA XP beads (Beck-

man Coulter, #A63987), resuspended in 20 mL of RNase-free water and quantified using NanoDrop spectrophotometer and Qubit�.

Poly(A)-tailing was performed by mixing 1 mg of DNase-treated total RNA with the following reagents: 2 mL of poly(A)-tailing buffer

(NEB, #B0276SVIAL), 2 mL of 10 mM ATP (NEB, #B0756AVIAL), 1 mL of E. coli Poly(A) polymerase (NEB, #M0276SVIAL), 0.5 mL of

SUPERase,In� (Life Technologies, #AM2694) in a total volume of 20 mL. The reaction mixtures were incubated for 15 minutes at

37 �C. Poly(A)-tailed RNA was then cleaned using Zymo RNA Clean and Concentrator (Zymo, #R1015) and quantified using

NanoDrop spectrophotometer and Qubit�. RNA profiles of DNase-treated and poly(A)-tailed RNA were checked using the Tapes-

tation�. Four samples per flow cell were barcoded by ligating custom-made oligonucleotides by mixing the following reagents:

250 ng of poly(A)-tailed total RNA per sample, 1.5 mL NEBNext Quick Ligation Reaction Buffer, 0.75 mL T4 DNA Ligase, 0.5 mL

RNaseOUT (Invitrogen, 10777019) and 0.5 mL of pre-annealed custom-made oligonucleotides. The reaction mixtures were mixed

by pipetting and incubated for 10 minutes at room temperature. After the ligation, reverse transcription was performed directly by

adding 6.5 mL of RNase-free water, 1 mL of 10 mM dNTPs (Thermo Fisher, #18427013), 4 mL of Maxima RT buffer and 1 mL of Maxima

reverse transcriptase (Life Technologies, #EP0751). The samples were mixed by pipetting and incubated for 30 min at 60 �C. The
RNA-cDNA hybrids were then cleaned using RNA XP beads (Beckman Coulter, #A63987), resuspended in 5 mL of RNase-free water

and placed into a clean 1.5 mL Eppendorf DNA LoBind tube (Eppendorf, 30108051). RNA and cDNA were quantified using Qubit�.

50 ng of each sample was pooled together and mixed with 8 mL of NEBNext Quick Ligation Reaction Buffer (NEB, #B6058S), 6 mL of

RNA adaptor (RMX, ONT), 3 mL of RNase-free water, and 3 mL of T4 DNA ligase (NEB, #M2200L) in a total volume of 20 mL. The re-

action mixture was mixed by pipetting and incubated for 10 minutes at room temperature. The library was cleaned using RNA XP

beads (Beckman Coulter, #A63987), with Wash Buffer (WSB, ONT) in the washing steps, for a total of two washes. The beads

were then eluted in 21 mL of Elution Buffer (EB, ONT). RNA and cDNA were quantified using Qubit�. The library was mixed with

17.5 mL of RNase-free water and 37.5 mL RRB buffer (ONT) and loaded onto the flow cell.

Direct cDNA nanopore library preparation
All Nanopore sequencing runs were performed using the MinION sequencer (flow cell type: FLO-MIN106, sequencing kit:

SQK-DCS109, barcoding expansion kit: EXP-NBD104). Standard Oxford Nanopore direct cDNA sequencing protocol (version

DCB_9091_v109_revC_04Feb2019) was used to sequence mouse tissue total RNA samples. 100 ng of total RNA per sample was

used for the first strand synthesis reaction, mixed with 2.5 mL of VNP (ONT cDNA sequencing kit), 1 mL of 10 mM dNTPs and filled

to 7.5 mL with RNase-free water. The mixture was incubated at 65 �C for 5 minutes and then snap cooled on ice. The following re-

agents were mixed in a separate tube: 4 mL of 5x RT buffer, 1 mL RNaseOUT (Invitrogen�), 1 mL of RNase-free water and 2 mL

of Strand-Switching Primer (SSP, ONT cDNA sequencing kit). The tubes were gently mixed by flicking and incubated at 65 �C for

2 minutes. 1 mL of Maxima H Minus Reverse Transcriptase (Life Technologies, EP0751) was added to the reaction mixture, which

wasmixed by flicking and incubated for 90 minutes at 42 �C, followed by heat inactivation at 85 �C for 5 minutes. RNA was degraded

by adding 1 mL of RNase Cocktail EnzymeMix (ThermoFisher, AM2286) followed by incubation for 10 minutes at 37 �C. DNA cleanup

was performed using AMPure XP beads and quantity and quality were assessed usingQubit� and Tapestation�. The second strand

was synthesized by mixing the following reagents: 25 mL of 2x LongAmp Taq Master Mix (NEB, 174M0287S), 2 mL PR2 primer (ONT

cDNA sequencing kit), 20 mL reverse-transcribed sample and 3 mL RNase-free water. The reaction mixture was incubated using the

following protocol: 94 �C, 1 minute; 50 �C, 1 minute; 65 �C, 15 minutes; 4 �C, hold. Another AMPure XP beads cleanup step was per-

formed, proceeding to the end-prep step by mixing the following reagents: 20 mL cDNA sample, 30 mL RNase-free water, 7 mL Ultra II

End-prep reaction buffer (NEB, E7647A), 3 mL Ultra II End-prep enzyme mix (NEB, E76468). The mixture was incubated at 20 �C for

5minutes and 65 �C for 5minutes. After another AMPure XP beads cleanup step, the samples were barcoded bymixing the following

reagents: 22.5 mL End-prepped cDNA, 2.5 mL native barcode (NB01-NB12, ONT barcode extension kit EXP-NBD104), 25 mL Blunt/TA

ligase master mix (NEB, M0367S). The reaction mixture was incubated for 10 minutes at room temperature, and the barcoded sam-

ples were cleaned up using AMPure XP beads. The cDNA amounts were measured using Qubit�, and the samples were pooled

together in equal ratios, not exceeding 120 ng (200 fmol) as the maximum total amount of barcoded cDNA. The adapter ligation

was performed by mixing together 65 mL of the pooled barcoded sample, 5 mL Adapter Mix II (AMII, ONT cDNA sequencing kit),

20 mL NEBNext Quick Ligation Reaction Buffer 5X (NEB, B6058S) and 10 mL Quick T4 DNA Ligase (NEB, M2200L). The reaction

mixturewas incubated for 10minutes at room temperature, after which the cDNAwas cleaned up using AMPure XP beads and eluted

in 13 mL of Elution Buffer (EB, ONT cDNA sequencing kit). The final amount was �50 ng of cDNA, which was mixed with 37.5 mL

Sequencing Buffer (SQB) and 2.5 mL Loading Beads (LB, ONT cDNA sequencing kit) and loaded onto a previously primed

MinION R9.4.1 flow cell.
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NanoCMC-seq
CMC treatment, library preparation and nanopore sequencing were performed as described by Begik et al.32 10 mg of total RNA per

sample was incubated in NEBNext Magnesium RNA FragmentationModule at 94 �C for 1.5 min. The fragmented RNAwas then incu-

bated with either 0.3 M CMC (ChemCruz, sc-255354) dissolved in 100 ml of TEU buffer (50 mM Tris pH 8.5, 4 mM EDTA, 7 M urea) or

100 ml of TEU buffer (no CMC) for 20 min at 37 �C. Reaction was stopped with 100 ml of Buffer A (0.3 M NaOAc and 0.1 mM EDTA, pH

5.6), 700 ml of absolute ethanol and 1 ml of Pellet Paint (Novagen, 69049-3). RNA in the stop solution was chilled on dry ice for 5 min

and then centrifuged at maximum speed for 20 min at 4 �C. Supernatant was removed, and the pellet was washed with 70% ethanol.

After air drying for a few minutes, the pellet was dissolved in 100 ml of Buffer A and mixed with 300 ml of absolute ethanol and 1 ml of

Pellet Paint. After chilling on dry ice for 5 min, the solution was then centrifuged at maximum speed for 20 min at 4 �C. Supernatant
was removed, and the pellet was washedwith 70%ethanol. After washing, the pellet was air dried and resuspended in 40 ml of 50mM

sodiumbicarbonate, pH 10.4, and incubated at 37 �C for 3 h. Then, RNAwasmixedwith 100 ml of Buffer A, 700 ml of ethanol and 1 ml of

Pellet Paint for 1 h at�80 �C. The solution was then centrifuged at maximum speed for 25min at 4 �C, and the pellet was washed with

70% ethanol and dissolved in 30 mL of water after air drying. Unprobed and probed RNAs were treated with T4 Polynucleotide Kinase

(NEB, M0201S) for 30 min at 37 �C, before proceeding with ONT Direct cDNA Sequencing.

Beforestarting the librarypreparation, 2ml of 10mMreverse transcriptionprimer (OriginalONTVNP:50-/5Phos/ACTTGCCTGTCGCTC-

TATCTTCTTTTTTTTTTTTTTTTTTTTVN-30) and 2 ml of 10 mM complementary oligo (CompA: 50-GAAGATAGAGCGACAGGCAAGTA-30)
were mixed with 1 ml of 0.1 M Tris pH 7.5, 1 ml of 0.5 M NaCl and 4 ml of water. The mix was incubated at 94 �C for 1 min, and the tem-

peraturewas rampeddown to 25 �C (�0.1 �Cs�1) to pre-anneal the oligos. TheCMC-treated and untreated sampleswerepoly(A) tailed

using E. coli Poly(A) polymerase (NewEngland Biolabs,M0276L) for 20min at 37 �C. Then, 100 ng of poly(A)-tailed RNAwasmixedwith

1 ml of pre-annealed VNP + CompA, 1 ml of 10 mM dNTP mix, 4 ml of 53 RT Buffer, 1 ml of RNasin Ribonuclease Inhibitor (Promega,

N2511), 1 ml of Maxima H Minus RT (Thermo Fisher Scientific. EP0742) and nuclease-free water up to 20 ml. The reverse transcription

mix was incubated at 60 �C for 30 min and inactivated by heating at 85 �C for 5 min before moving onto ice. Next, RNAse Cocktail

(Thermo Fisher Scientific, AM2286) was added to the mix to digest the RNA, and the mix was incubated at 37 �C for 10 min. Then,

the reactionwas cleaned upusing 1.23AMPureXPBeads (Agencourt, A63881). To be able to ligate the sequencing adapters to the first

strand, 1ml of 10mMCompAwasagain annealed to the15-ml cDNA ina tubewith2.25ml of 0.1MTrispH7.5, 2.25ml of 0.5MNaCl and2ml

of nuclease-freewater.Themixwas incubatedat94 �C for 1min,and the temperaturewas rampeddownto25 �C(�0.1 �Cs�1) toanneal

the complementary to the first-strand cDNA. Next, 22.5 ml of first-strand cDNAwas mixed with 2.5 ml of Native Barcode (EXP-NBD104)

and 25 ml of Blunt/TA LigaseMix (NEB, M0367S) and incubated at room temperature for 10min. The reaction was cleaned up using 13

AMPure XP beads, and the libraries were pooled into one tube that, finally, contained the 200-fmol library. The pooled library was then

ligated to the sequencing adapter (AMII) using Quick T4DNA Ligase (NEB, M2200S) at room temperature for 10 min, followed by 0.653

AMPure XPBead cleanup using ABBBuffer for washing. The samplewas then eluted in elution buffer andmixedwith sequencing buffer

and loading beads before loading onto a primed R9.4.1 flow cell.

Nanopore DRS data analysis
Raw fast5 fileswerebasecalled, demultiplexedandmappedusing themop_preprocessmoduleofMoP2.71 Thedemultiplexingwasper-

formed using DeePlexiCon.77 Fasta files used as a reference for rRNA mapping were retrieved from GenBank, are correspond to the

following annotations: NC_000074.6 (5S rRNA), NR_003280.2 (5.8S rRNA), NR_003278.3 (18S rRNA) and NR_003279.1 (28S rRNA).

All fasta sequences are available in: https://github.com/novoalab/epitranscriptomic_fingerprinting/tree/main/fasta_files. Themop_pre-

process output was used as input formop_mod analysis, and Epinano was used to obtain summed errors calculated at per-site reso-

lution, for each sample. Briefly, the summed error (SE) values were calculated by summing the mismatch, deletion and insertion fre-

quencies at the per-site level for each position in all rRNA molecules, as the frequency of basecalling errors was reported to correlate

with the modification status of a given site.32,40 The SE values therefore do not quantitatively reflect the modification status (SE = 1

does not mean 100%modified), but they can be used for comparing modification levels across different samples. These values were

used for the production of scatter plots, correlation plots and heatmaps, and the scripts used are available at https://github.com/

novoalab/epitranscriptomic_fingerprinting. DM rRNA sites were identified by using the following formula: V = |Xi - Med|, where V is

the value representing the absolute SE difference between each sample (Xi) and the median for that specific site across all samples

(Med). Identified DM sites were considered as ‘‘annotated’’ if i) the signal matched a previously annotated rRNA modification site, or

ii) in the case of ribosemethylations, if the signal was found at 1-3 bases away froma previously annotated site. Otherwise, the DMsites

were regarded as putative unannotated rRNAmodification sites. The allele frequency threshold used in all IGV tracks throughout all fig-

ures was 0.2.

NanoCMC-seq data analysis
Raw fast5 files were basecalled, demultiplexed and mapped using the mop_preprocess module of MoP2.71 Fasta files used as a refer-

ence for rRNA mapping were retrieved from GenBank, are correspond to the following annotations: NC_000074.6 (5S rRNA),

NR_003280.2 (5.8S rRNA), NR_003278.3 (18S rRNA) and NR_003279.1 (28S rRNA). All fasta sequences are available in: https://

github.com/novoalab/epitranscriptomic_fingerprinting/tree/main/fasta_files. A custom script prepared by Begik et al.32 was used to

extract RT-drop signatures, and the RT-drop scores were plotted using ggplot2. All scripts used to process nanoCMC-seq data with

RT-drop information are available in GitHub (https://github.com/novoalab/yeast_RNA_Mod/tree/master/Analysis/NanoCMCSeq).
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Notably, due to the 50 end truncation of the nanopore sequencing reads by�13 nt, RT-drop positionswere shifted by 13 nt to accurately

determine the exact RT-drop positions. To identify significant RT-drops in a given transcript, we first computed RT-drop scores at each

site, which took the difference in the coverage at a given position (0) relative to the previous position (�1). We then computed the differ-

ence (DRT drop-off score) in RT-drop scores between CMC-probed and unprobed conditions. Lastly, we normalized theDRT drop-off

score at eachpositionby themedianRTdrop-off per transcript, leading to finalCMCscores,which can becompared across transcripts.

Positions with a CMC score greater than 13 for 18S and 12 for 28Swere considered significant—that is, to contain a pseudouridine. We

should note that the nanoCMC-seq signal-to-noise ratio is dependent on the coverage of the individual transcript.

Identification of putative mouse snoRNAs
The snoRNA prediction algorithms used were: Snoscan (version 1.0)78 and SnoGPS (version 2.0),79 both with default parameters. To

localize predicted snoRNA positions on themouse genome, readswere alignedwith STAR (version 2.4.0f1)80 on themouse reference

genome mm39 with default parameters and–outFilterMultimapNmax 1 to discard multi mapped reads. Snoscan and SnoGPS were

used on the following datasets: noncoding RNA-Seq ofMus musculus lung tissue (PRJNA967497); long RNAs-seq ofMus musculus

adult male corpus callosum (PRJNA1098504); lariat-intronic RNAs in theMus musculus cytoplasm (PRJNA479418); and small non-

coding RNA-seq ofMus. musculus heart tissue (PRJNA686442). The following Mus musculus reference sequences were used: 18S

rRNA (NR_003278.3) and 28S rRNA (NR_003279.1) from NCBI, and genome mm39 from UCSC.

Classification of tissues and cell types using random forest models
Bam files of reads mapping to rRNA were randomly subset to contain a portion of random reads for each sample. These pseudor-

eplicates were then used for RFmodels training and testing. In the case of mouse tissues, the bam files corresponding to the first two

biological replicates were each subset to 12 pseudoreplicates. The bam files were further processed using epinano, and SE values of

DM rRNA modification sites were used for building the RF models. The pseudoreplicates corresponding to the first biological repli-

cate were used to train the RF model, which was then used to predict the tissue types of the testing data set, corresponding to the

second biological replicate. The training-testing cycle was repeated twice to improve accuracy of the model. The classifier was then

validated on the samples corresponding to the third biological replicate (adult brain, heart, liver and testis, with subsetting the bam

files to 1200, 1000, 800, 600, 400, 200 and 100 reads). The code to reproduce the results can be found at https://github.com/

novoalab/epitranscriptomic_fingerprinting/blob/main/Figure_3/Figure_3_Panel_D.R.

The workflow was replicated for cell type and developmental stage classification, with the difference of only using two biological

replicates. The RF model was trained on the training data corresponding to the first biological replicate in a single training cycle, and

then tested on the testing data corresponding to the second biological replicate.

Nanopore human data analysis
Raw fast5 files were basecalled, demultiplexed and mapped using the mop_preprocess module of MoP2.71 In the case of the lung

cancer cohort (40 samples, consisting of 20matched normal-tumor lung samples, see Figure 6), the software SeqTagger81 was used

for demultiplexing, using the 96-barcode model (see Table S18 for barcode information). Fasta files used as a reference for rRNA

mapping are the following: NR_023363.1 (5S rRNA); NR_145821.1 (5.8S rRNA), NR_145820.1 (18S rRNA), NR_003287.4 (28S

rRNA), and are available at: https://github.com/novoalab/epitranscriptomic_fingerprinting/tree/main/fasta_files. Mop_preprocess

output was used as input formop_mod analysis, throughwhich Epinanowas run on each sample and summed errorswere calculated

at per-site resolution. DM rRNA sites were identified by calculating the average SE in cancer and normal samples, and sorting the

rRNA sites by the absolute difference between the averages.

QUANTIFICATION AND STATISTICAL ANALYSIS

Outliers in scatter plots shown in Figures 1 and S3–S6were defined as those withDSE >0.12. In Figures 1G, S8, and S9, a cutoff value

of CMC score = 12 was used to distinguishJ-modified from non-J sites. Statistical significance in CMC sequencing data shown in

Figure 1Hwas assessed using a one-way ANOVA test. Statistical significance of the data is indicated as follows: *p < 0.05, **p < 0.01,

ns = not significant. Two biological replicates are represented as dots, and bars correspond to the mean of the replicates. Three bio-

logical replicates of each tissue were used for building the RF model shown in Figure 3D - first two replicates were used for initial

analyses and training, and the third replicate was used for independent validation. SE values of 18S:355 are shown as means of

two biological replicates, with error bars representing standard deviation, shown in Figure 4D. DSE cutoff used for Figure 5B was

0.10. Normal-tumor differences in top 7 identified outliers are shown as means across all normal samples (n = 4) versus all tumor

samples (n = 4), with error bars representing standard errors. Significance was checked using an independent t-test (*p < 0.05).

The RF classifier shown in Figure 6D was trained on 10 matched normal-tumor lung sample pairs from 10 patients, and tested on

10matched pairs from other 10 patients (see also Figure S19). In Figure S11, themeans of rRNAmodification levels are shown across

two biological replicates, while means of snoRNA levels are presented across 14, 13, 13, and 3 biological replicates for brain, heart,

liver, and testis, respectively (data from Isakova et al.46).
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