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ABSTRACT
Ribosomal RNAs are decorated by numerous post-transcriptional modifications whose exact roles in 
ribosome biogenesis, function, and human pathophysiology remain largely unknown. Here, we report 
a targeted direct rRNA sequencing approach involving a substrate selection step and demonstrate its 
suitability to identify differential modification sites in combination with the JACUSA2 software. We 
compared JACUSA2 to other tools designed for RNA modification detection and show that JACUSA2 
outperforms other software with regard to detection of base modifications such as methylation, 
acetylation and aminocarboxypropylation. To illustrate its widespread usability, we applied our method 
to a collection of CRISPR-Cas9 engineered colon carcinoma cells lacking specific enzymatic activities 
responsible for particular rRNA modifications and systematically compared them to isogenic wild-type 
RNAs. Besides the numerous 2′-O methylated riboses and pseudouridylated residues, our approach was 
suitable to reliably identify differential base methylation and acetylation events. Importantly, our 
method does not require any prior knowledge of modification sites or the need to train complex 
models. We further report for the first time detection of human rRNA modifications by direct RNA- 
sequencing on Flongle flow cells, the smallest-scale nanopore flow cell available to date. The use of 
these smaller flow cells reduces RNA input requirements, making our workflow suitable for the analysis 
of samples with limited availability and clinical work.
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Introduction

Ribosomes are evolutionary-conserved sophisticated nanoma
chines responsible for protein production in all three kingdoms 
of life. They are composed of a small and a large subunit, termed 
40S and 60S in eukaryotes. Mammalian ribosomes are composed 
of four ribosomal RNAs (rRNAs), the 5S, 5.8S, 18S, and 28S 
rRNAs and of 80 ribosomal proteins [1]. The biogenesis of ribo
somes is a highly complex process that requires several hundreds 
of assembly factors [2–5], which are either proteins or small RNAs 
(small nucleolar RNAs, snoRNAs).

An important step of ribosome biogenesis is the modification 
of rRNAs [6,7]. Some modifications are conserved throughout 
kingdoms, others are not. In eukaryotes, the most abundant 
rRNA modifications are the 2′-O-methylation of ribose (sugar 
methylation) and the isomerization of uridine to pseudouridine 
(Ψ) [8]. In a recent comprehensive study conducted on human 
lymphoblast TK6 cells, 42 pseudouridines and 42 2′-O-ribose 
methylations were described on the 18S rRNA, whereas the 28S 
rRNA was shown to contain 61 pseudouridines and 68 2′-O-ribose 
methylations [8]. Besides these abundant modifications, rRNAs 
carry additional base modifications, including methylation, 

acetylation, and aminocarboxypropylation [8]. Most activities 
responsible for rRNA modifications have been identified to date 
[1], however their biological role is often only partially understood. 
In some cases, it is the physical presence of the modification 
enzyme in cells rather than that of the modification which is 
important [9]. 2′-O-methylation and pseudouridylation are cata
lysed by snoRNA-guided enzyme complexes [10] and are thought 
to stabilize secondary and tertiary structures of modified rRNAs 
[11,12]. Furthermore, some of them at least are required to pro
mote efficient and proper translation [12–14].

The importance of correct ribosome assembly for cell homo
eostasis is evidenced by an emerging class of syndromes designated 
as ribosomopathies. Ribosomopathies are ribosome biogenesis 
dysfunction diseases caused by ribosomal protein or ribosome 
assembly factor mutations [15]. Although all ribosomopathies 
affect ribosome biogenesis to some extent, they give rise to differ
ent syndromes [15]. For example, mutations in the snoRNA- 
associated pseudouridine synthetase DKC1 (dyskerin) cause 
X-linked dyskeratosis congenita, which is associated with bone 
marrow failure, skin and mucosa alterations, and increased cancer 
susceptibility [16]. Mutations in DKC1 also lead to defective 
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telomerase maintenance [17], and it is understood that, in this 
case, both telomerase dysfunction and aberrant RNA modification 
contribute to the disease. The observed decrease in pseudouridine 
levels is accompanied by an impairment in the translation of 
specific cellular mRNAs, in particular those harbouring internal 
ribosome entry sites in their 5′ UTR [12]. Furthermore, transla
tional fidelity is strongly reduced by DKC1 depletion [18,19].

In the past, the analysis of mutations in ribosomal proteins 
and ribosome assembly factors was made possible by the use 
of diverse perturbation techniques. However, it was less fea
sible to systematically elucidate the effect of mutations in 
rRNA (due to the high complexity and repetitive nature of 
genomic rDNA loci [20–22]), or to directly assess dynamic 
changes in distinct rRNA modifications in clinical or biologi
cal samples for which the amount of material is limited. Mass 
spectrometry- and HPLC-based methods usually require 
a high amount of input material (µg range) to allow for the 
accurate detection of ribosomal modifications [8]. Other 
deep-sequencing-based methods such as RiboMethSeq [23] 
or HydraPsiSeq [24] are restricted to specific modification 
types: 2′-O-ribose methylation or pseudouridine detection, 
respectively. Consequently, the relevance of mutations or 
aberrant modifications in rRNAs is not well understood.

With the advent of long-read sequencing techniques, espe
cially the direct RNA sequencing method (direct RNA-seq) 
introduced by Oxford Nanopore Technologies (ONT), it has 
become possible to directly sequence full-length RNA molecules 
[25–27]. Using direct RNA-seq, RNA modifications can now 
also be analysed directly as exemplified recently 
for m6A [25,26,28–31] and pseudouridine [31,32]. Nanopore 
direct RNA-seq was previously used to analyse rRNA sequences 
derived from bacteria [29,30], yeast [30,32,33], and human cells 
[30,31]. An increasing number of computational tools are 
becoming available to call RNA modifications in direct RNA- 
seq data [30–36] with different underlying concepts. Each of 
these methods displays specific advantages and inherent limita
tions. For example, nanoRMS uses changes in the electric cur
rent intensity and trace profiles to analyse pseudouridine 
modifications [32]. Furthermore, the software can be adapted 
to identify differential 2′-O-ribose methylation sites; however, it 
is not intended for detection of the heterogeneous class of other 
base modifications. Another recent work based on signalAlign 
profiles known rRNA modifications at the single read level, but 
requires extensive prior knowledge based on a previously 
reported modification map [33]. Thus, this method is not sui
table to identify novel modifications. We have recently intro
duced the JACUSA2 algorithm for the analysis of RNA 
modifications [31], which uses basecalling errors (Mismatch, 
Deletion, Insertion) in pairwise comparisons (call-2 mode), 
and handles replicate samples. Previously, we have demon
strated the feasibility of JACUSA2 in the analysis 
of m6A modifications on mRNA and the detection of modified 
uridine residues (mainly pseudouridine) on rRNA [31].

In this work, we show that JACUSA2 affords the de novo 
identification of differential modification sites with no need 
for training data or prior knowledge of the position and 
chemical nature of the modification. First, we established 
nanopore targeted direct RNA-seq of human 18S rRNA with 

a specific adapter (rather than by performing bulk polyade
nylation and non-discriminative sequencing of total RNA). In 
a benchmark of JACUSA2 against other published tools, we 
find that JACUSA2 Mis is especially useful to identify base 
modifications as methylation and acetylation. Moreover, 
JACUSA2 is faster and computationally less demanding than 
most other tools. To validate the detection of these RNA 
modifications, we employed a collection of CRISPR-Cas9- 
engineered human colon carcinoma cells (HCT116) lacking 
specific modifications on the 18S rRNA. To detect modifica
tion signatures in nanopore direct rRNA-seq data, each ana
lysed modification was systematically compared in mutant 
(MUT)/knock out (KO) and isogenic wild type (WT) control 
cells. Using this approach, we validated, in addition to the 
abundant 2′-O-ribose methylated and pseudouridylated resi
dues, several 18S rRNA base modifications (including the 
METTL5-catalysed m6A1832 [37], the DIMT1L-catalysed 
m6

2A1850 m6
2A1851 [9,38,39], the WBSCR22-catalysed m7G1639 

[9,40,41], and the NAT10/SNORD13-catalysed ac4C1842). 
Employing JACUSA2 call-2, we show that all analysed rRNA 
modifications are detectable as differential sites in nanopore 
direct rRNA-seq data. Importantly, we provide experimental 
and computational evidence that our approach can estimate 
relative levels of modification based on calibration curves. 
Lastly, to expand the repertoire of biological samples that 
are accessible to nanopore direct rRNA-seq, the targeted 
rRNA-seq method was transferred to the small-scale Flongle 
flow cells. We demonstrate that downscaled nanopore direct 
rRNA-seq on these small devices equipped with only 126 
pores allows for detection of rRNA modifications as efficiently 
as with MinION flow cell sequencing.

In summary, we show that nanopore direct rRNA-seq in 
combination with JACUSA2 is a fast and simple approach to 
identify changes in rRNA modification pattern, irrespective of 
the chemical nature of the analysed modifications or prior 
knowledge on the modification sites. Furthermore, our min
iature Flongle-based sequencing approach makes the method 
amenable to precious low-input samples of biological and 
clinical relevance.

Materials and methods

Generation of HCT116 mutant cell lines

All human cell lines were generated in p53-positive diploid 
HCT116 cells (ATCC, #CCL-247) by genome editing. The 
recipient cell line was diagnosed by ATCC by short tandem 
repeat (STR) analysis prior to use. The HCT116 METTL5−/− 

cell line has been described previously [37]. Here, the exon 
encoding the catalytic domain of the protein was precisely 
excised from the genome on both alleles by CRISPR-Cas9 
genome editing.

To generate the HCT116 DIMT1LY131G/Y131G, 
WBSCR22D82K/D82K, and SNORD13 KO cell lines, the selected 
point mutations or deletion of SNORD13 were introduced by 
CRISPR-Cas9 genome editing on both alleles, as follows: an 
in vitro reconstituted Cas9 RNP complex (final concentration 
4 µM) consisting of specific crRNA guides (see Table S2), 
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a universal tracrRNA (IDT, #1072532), and the Streptococcus 
pyogenes Cas9 (IDT, #1081058), was electroporated in cells 
freshly resuspended in nucleofector solution V (Lonza, VCA- 
1003) together with a single-strand donor DNA (ssDNA, final 
concentration 4 µM) in case of the point mutations. Cells were 
electroporated with an enhancer (IDT, #1075915, final con
centration 4 µM) in a nucleofector device (Lonza, 
Nucleofector 2; programme D-032). Cells were incubated for 
24 h to allow them to recover and then detached and cloned 
by serial dilution. Individual clones were selected and diag
nosed by PCR amplification of the modified area (for 
SNORD13 KO clones, clone #2 was used), followed by differ
ential restriction digest for DIMT1LY131G/Y131G clones (gain of 
a BstNI restriction site, clone #10 was used) and 
WBSCR22D82K/D82K clones (loss of an EcoRV restriction site, 
clone #1 was used) as well as by DNA sequencing of the 
modified area.

Cell culture

HCT116 cells were cultured in McCoy’s 5A medium (Lonza, 
BE12-168F) supplemented with 10% foetal bovine serum 
(Sigma, F7524), 100 U/ml penicillin, and 100 µg/ml strepto
mycin (Lonza, DE17-602E) in a New Brunswick Galaxy 170 R 
incubator at 37°C and under 5% CO2.

Isolation of total RNA

Total RNA from HCT116 cells was extracted in TriReagent 
solution (Thermo Fisher) according to the manufacturer’s 
instructions.

Isolation of genomic DNA

Genomic DNA was isolated from five Mio HeLa cells using 
the NucleoSpin tissue kit (Macherey-Nagel) according to the 
manufacturer’s protocol.

Generation of templates for in vitro transcription

The complete 18S rRNA sequence was amplified from geno
mic DNA by touchdown PCR with Q5 DNA polymerase 
(New England Biolabs) using a forward primer that intro
duces the T7 promoter sequence for in vitro transcription 
(IVT). The following protocol was used for touchdown PCR: 
30 sec initial denaturation at 98°C, 20 cycles of touchdown 
(10 sec, 98°C; 20 sec, 72°C to 62°C (∆Tm −0.5°C); 5 min, 
72°C), followed by 15 cycles standard PCR at 62°C annealing 
temperature and final elongation (5 min, 72°C). The primer 
sequences are listed in Table S1.

In vitro transcription

The 18S IVT was generated using the T7 Megascript kit 
(Thermo Fisher Scientific) according to the manufacturer’s 
protocol. RNA integrity was analysed on a 1% agarose gel. 
The IVT product was purified using RNA Clean and 
Concentrator kit (Zymo Research).

Polyadenylation of 18S IVT

One-microgram 18S IVT was polyadenylated with an E-PAP 
based Poly(A) Tailing Kit (Thermo Fisher Scientific) accord
ing to the manufacturer’s instructions and purified using 
RNA Clean and Concentrator kit (Zymo Research).

Generation of ONT direct RNA-seq libraries for 
sequencing on FLO-MIN106D (R9.4.1) flow cells

Direct RNA-seq libraries were generated using the SQK- 
RNA002 kit (Oxford Nanopore Technologies) following the 
sequence-specific protocol. Universal oligo A and sequence- 
specific oligo B (Table S1) were annealed at a concentration 
of 1.4 µM each in 10 mM Tris, pH 7.5, 50 mM NaCl (2 min, 
95°C; 0.1°C/sec to 22°C). Briefly, 500 ng total RNA in 
a volume of 9 µl was ligated to 1 µl custom adapter using 
1.5 µl T4 DNA ligase (New England Biolabs) in NEB next 
Quick ligation buffer (3 µl, New England Biolabs) in the 
presence of 0.5 µl RNA CS (Oxford Nanopore 
Technologies) for 10 min at room temperature. Reverse 
transcription to stabilize the RNA strand was performed 
using Superscript IV reverse transcriptase (Thermo Fisher 
Scientific for 50 min at 50°C, followed by enzyme inactiva
tion (10 min, 70°C)). Reactions were cleaned up using 
Agencourt RNAClean XP beads (Beckman Coulter). The 
RMX RNA adapter was ligated as described above, followed 
by Agencourt RNAClean XP purification and elution in 21  
µl elution buffer. The concentration of the library was 
determined using Qubit DNA HS assay (Thermo Fisher 
Scientific). Libraries were sequenced on a GridION X5 
device equipped with MinION R9.4.1 flow cells for 48 h 
and basecalled with Guppy 5.0.11 in fast-basecalling mode.

Generation of ONT direct RNA-seq libraries for 
sequencing on Flongle flow cells

Libraries for sequencing on Flongle flow cells were prepared 
as above with some modifications. Libraries were prepared 
with 200 ng total RNA as input. After the first cleanup, RNA 
was eluted in 10 µl H2O and the following steps carried out in 
a smaller volume: 10 µl RNA were ligated to 2 µl RMX with 1  
µl T4 DNA Ligase in a total volume of 20 µl and purified with 
an equal volume of Agencourt RNAClean XP beads. Libraries 
were eluted in 9 µl ELB. Flongle flow cells were loaded by 
a community protocol to allow loading similar to the FLO- 
MIN106D flow cells (https://community.nanoporetech.com/ 
posts/a-very-gentle-relatively). Flongle flow cells were primed 
with 117 µl FLB +3 µl FLT. Eight-microlitre library was 
diluted with 7 µl H2O and loaded with 15 µl RRB. Flongle 
libraries were sequenced on a GridION X5 device equipped 
with Flongle adapters and Flongle flow cells for 24 h and 
basecalled with Guppy 5.0.11 (Figure 5: 5.1.13) in fast- 
basecalling mode.

Preprocessing of direct RNA-seq data

Reads were mapped using minimap2 version 2.17. BAM files 
were filtered to exclude secondary and poor alignments. Plus, 
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the MD tag was added to allow variant calling using 
JACUSA2 software without the need for the reference 
transcriptome.

Detection of modifications with JACUSA2

The JACUSA2 software [31] calculates individual scores for 
Mismatch, Deletion, and Insertion events. We employ the 
JACUSA2 call-2 run mode throughout this manuscript, 
which compares replicate samples from two conditions. If 
not otherwise stated, we use 1,000 reads for our analyses 
throughout the manuscript. We tested the following feature 
sets derived from JACUSA2 to take into account the cluster
ing of rRNA modifications, as well as the inherent character
istic of the current nanopore pore protein to cover 5-mers: a) 
Mismatch score of the analysed site (M), b) Mismatch, 
Insertion, and Deletion scores of the analysed site (MDI), c) 
Mismatch score of the 5-mer context (modified site in posi
tion 3), Insertion, and Deletion score of the analysed site 
(MConDI) and d) Mismatch, Insertion, and Deletion score of 
the 5-mer context ((MDI)Con). We either use these JACUSA2 
scores and feature sets directly or employ them as input to the 
Local Outlier Factor (LOF) [42] method. To generate 
JACUSA2 score plots, our software performed WT vs. IVT 
comparisons on either one or three replicate samples. In case 
of the genetic model systems, where we can make an assump
tion on the number of differential sites, we applied the LOF 
method which predicts outliers in an unsupervised manner by 
measuring the density deviation of each point with respect to 
its neighbours. We predict positions with the highest LOF 
score as modified. We only compute LOF scores for positions 
where the JACUSA2 score is above the median of the score 
distribution. We compute the LOF score for all positions 
using the set of pairwise comparisons as features. The propor
tion of outliers to be captured for the analysed cases was set to 
0.1–0.2% (contamination value 0.001–0.002), depending on 
the expected number of differential sites. We used the 
‘LocalOutlierFactor’ function from the scikit-learn python 
package with the default neighbourhood size 20 to compute 
LOF scores and the matplotlib package for visualization. We 
labelled the identified outliers as modified site, neighbours 
(−2 to +2) or non-modified positions post hoc based on the 
analysis by [8].

rRNA benchmark

The rRNA benchmark has been implemented as a snakemake 
(v7.25.3) workflow to measure the performance of different 
software solutions in identifying RNA modifications. All 
employed tools perform pairwise comparisons where WT 
and KO/IVT conditions are contrasted. Performance has 
been measured against a set of known 18S rRNA modifica
tions. The influence of basecalling, and the number of repli
cates has been investigated by running tools on data sets 
processed with different combinations of the aforementioned 
factors. Calculations have been carried out on the same node 
in a slurm cluster (see Supplementary Text for details). The 
area under the precision recall curve has been used to com
pare the performance of the tools (Figure S2, Figure S3 and 

Supplementary Text). The running times of the tools were 
determined in triplicates (Table S4, Supplementary Text).

Downsampling analysis

To evaluate the effect of read coverage on the analysis, BAM 
files were downsampled to different amounts of reads (0.3k, 
0.5k, 1k, 5k, 10k). We employ various seed values for the 
downsampling procedure. The generated down-samplings 
were subjected to the JACUSA2 call-2 analysis. To compare 
results across the different levels of read coverage, we calcu
lated the distance between modification sites and the median 
in terms of two basic scores: the JACUSA2 Mismatch scores 
and the score assigned to each site by the LOF method. To 
avoid bias caused by the different scales of LOF scores across 
analyses, the normalized distance was considered so that the 
difference between the score of the modification site and the 
median is divided by the maximum LOF value.

Mixing analysis

To evaluate the ability to detect rRNA modifications with low 
stoichiometry, in silico samples with different averages of 
modification rates (0%, 0.5%, 5%, 10%, 25%, 50%, 75%, 
100%) were designed by combining WT and KO/MUT sam
ples of 1,000 reads. Then, differential analysis of the generated 
mixtures and the MUT/IVT samples was performed using 
JACUSA2 call-2. For the experimental mixing analysis, WT 
and KO/MUT RNA were mixed with the indicated ratios and 
libraries were prepared for sequencing on Flongle flow cells as 
described above. The JACUSA2 Mismatch score was com
pared across different mixture ratios.

Preprocessing, down-sampling, and mixing were per
formed using Samtools version 1.9. A Snakemake pipeline 
for the analysis workflow was developed and is available on 
Zenodo (https://doi.org/10.5281/zenodo.8268171).

Northern blot

The loss of SNORD13 in HCT116 SNORD13 KO was analysed 
by Northern blotting [43] using a probe described in Table S2. 
Ethidium bromide staining was used to control loading.

Primer extension assay

Primer extension assays were used to validate the loss of 
specific 18S rRNA modifications in CRISPR-Cas9- 
engineered HCT116 cell lines as described previously 
[38,44,45] using 2 µg total RNA and primers listed in 
Table S3.

Misincorporation assay

Acetylation of 18S rRNA C1842 was analysed by NaCNBH3 
reduction, followed by TGIRT-III reverse transcription and 
Sanger sequencing of the PCR product based on the method 
described [45–47]. Briefly, 200 ng total RNA was reduced with 
100 mM NaCNBH3 in 100 mM hydrochloric acids for 20 min at 
room temperature in a total volume of 100 µl. Reactions were 
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quenched by the addition of 30 µl 1 M Tris pH 8.0 and purified 
with RNA Clean & Concentrator-5 kits (Zymo Research). 200 pg 
reduced RNA or non-treated control (not shown) was reverse 
transcribed with a primer targeting the H45 of the 18S rRNA 
(18S H45 rev) and TGIRT-III reverse transcriptase. RNA was 
mixed in a total volume of 17 µl with 4 µl 1 µM RT primer and 4  
µl 5 × TGIRT buffer (2.25 M NaCl, 25 mM MgCl2, 100 mM Tris 
pH 7.5) and incubated 3 min at 75°C, followed by 3 min on ice. 
Then, 1 µl 100 mM DTT and 0.5 µl TGIRT-III (Ingex) were 
added. Reactions were incubated for 20 min at room tempera
ture. After addition of 1 µl dNTP mix with reduced dGTP (10  
mM dATP, dTTP, and dCTP and 5 mM dGTP), reactions were 
incubated 60 min at 57°C. PCR reactions were composed of 2 µl 
cDNA, 2.5 µl 10 µM 18S H45 forward and reverse primer, 
respectively, 10 µl 5 × HF buffer, 1 µl 10 mM dNTPs, 1 µl 
Phusion Hot Start Flex DNA Polymerase (New England 
Biolabs) and 31 µl water. Reactions were cycled with the follow
ing programme: 30 sec initial denaturation at 98°C; 35 cycles (10  
sec, 98°C; 15 sec, 67.4°C; 15 sec, 72°C) and final elongation (5  
min, 72°C). PCR products were analysed on 2% agarose gels 
stained with GelRed (Biotium) and cleaned up with NucleoSpin 
Gel and PCR Clean-up Kit (Macherey-Nagel). PCR products 
were analysed by Sanger sequencing (LGC Genomics) with the 
18S H45 forward primer. Primer sequences used in the 
Misincorporation assay are listed in Table S3. Chromatograms 
were analysed with Chromas 2.6.6 (Technelysium Pty Ltd).

Results

Targeted direct ribosomal RNA-seq in total human RNA 
samples

The direct analysis of rRNA sequence variants and of rRNA 
modifications has only become possible recently, thanks to the 
advent of the direct RNA-sequencing (direct RNA-seq) platform 
developed by Oxford Nanopore Technologies (ONT). Here, we 
established a protocol with minimal pre-processing to enable the 
analysis of low-input samples (Figure 1A,B). To prevent the 
laborious purification of individual rRNAs, which often suffers 
from material loss and introduction of biases, or additional 
experimental steps, such as in vitro polyadenylation, we estab
lished a custom adapter (analogous to [48]) for the selective 
sequencing of human 18S rRNA that captures the 3′ end of the 
mature rRNA for direct rRNA-sequencing (Figure 1A). Input 
for our analysis was BAM files (basecalling with Guppy, align
ment with minimap2) sampled to equal read numbers (1,000 or 
5,000 reads). These were then subjected to a Snakemake work
flow for pairwise JACUSA2 call-2 analysis. JACUSA2 calculates 
scores for different basecalling errors: Mismatch, Deletion, and 
Insertion, which can be combined to feature sets. Identification 
of significantly different sites may be formulated as an outlier 
detection problem with local outlier factorization (LOF) 
(Figure 1B). The human 18S rRNA harbours 91 modification 
sites, with pseudouridines (psU) and 2′-O-ribose methylation 
(Nm) being the largest classes (Figure 1C).

First, we compared the performance of two sequence- 
specific adapters with different lengths to the standard 
oligo(dT) adapter (RTA) employing an in vitro transcribed 

(IVT) 18S rRNA. A ten nucleotides long adapter was suffi
cient to efficiently capture the 18S rRNA (Figure S1A,B). 
Furthermore, this analysis revealed sequencing of incom
plete (missing 3′ end) and reverse strand RNA molecules 
with the standard RTA. This problem was not observed 
with the sequence-specific adapter (Figure S1D-E). This 
adapter was then used for direct rRNA-seq of rRNA from 
human HCT116 cells and compared to the sequencing of 
a full-length 18S IVT (Figure 1D). The cellular rRNA dis
played a higher mismatch rate than the IVT (coloured lines, 
Figure 1D), which is indicative of the presence of rRNA 
modifications detectable via basecalling errors with the 
JACUSA2 algorithm [31].

To elucidate whether JACUSA2 is indeed suitable to iden
tify well-defined rRNA modifications [8], we analysed the 18S 
rRNA from HCT116 wild-type cells (WT) and the corre
sponding IVT using JACUSA2 call-2 (WT vs. IVT) and cal
culated Mismatch (Mis), Deletion and Insertion scores. 
Furthermore, we considered the 5-mer context (as the R9.4.1 
nanopore protein covers five nucleotides at a time) to test 
whether it contributes to the modification signal. This results 
in four feature sets that were derived from JACUSA2 as 
described in the Methods section.

The performance of these JACUSA2 feature sets was 
benchmarked against other tools designed for the identifica
tion of RNA modifications by direct RNA-seq, namely xPore 
[34], Nanocompore [36], EpiNano [28,32,35] and Eligos2 
[30]. We noticed that JACUSA2, also on replicate samples, 
and EpiNano have the shortest run times (Table S4). All tools 
were run on fast and high-accuracy (HAC) basecalled data. 
The AUC for precision and recall was calculated for all mod
ifications and additionally stratified according to modification 
type (pseudouridine, 2′-O-ribose methylation and other mod
ifications) for one and if possible three replicates (Figure S2). 
For all modifications, JACUSA2 Mis, EpiNano linear and 
EpiNano delta had the best performance, with EpiNano 
being slightly better on HAC basecalled data (Figure S2, 
panel 1). Interestingly, the performance of many tools was 
strongly dependent on the modification type. Here, EpiNano 
was best in detecting 2′-O-ribose methylation sites (Figure S2, 
panel 3), whereas JACUSA2 Mis and JACUSA2 MDI were 
superior in detection of diverse ‘other’ modifications (Figure 
S2, panel 4). We further stratified the 2′-O ribose methylation 
sites according to the nucleobase (Figure S3). This reveals that 
in case of Cm the 5-mer context and the use of replicates are 
important for modification calling (Figure S3, panel 2). 
However, as the Mis score is the main determinant for all 
other modification types, we decided to use JACUSA2 Mis on 
fast basecalled data throughout this study.

The JACUSA2 Mis scores for the WT – IVT comparison were 
further stratified for every modification type (Figure 1E), revealing 
the capability to detect ac4C, m6

2A, m1acp3psU, m6A and m7G in 
nanopore direct RNA-seq data. JACUSA2 Mis scores on HAC 
basecalled data (Figure S4) and for the other JACUSA2 feature 
sets (Figure S5) are provided in the Supplementary Material.

In conclusion, Nanopore direct rRNA-seq coupled to 
JACUSA2 analysis is suitable for the detection of diverse RNA 
modifications in human rRNAs and may be especially useful for 
detecting base modifications as methylation and acetylation.
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Nanopore direct rRNA-seq enables the detection of 
site-specific RNA modifications

Modification sites on rRNAs, including human rRNAs, have 
been characterized extensively by a range of techniques, 
including classical RNA biochemistry (such as primer exten
sion), HPLC, mass spectrometry, short-read deep sequencing- 
based methods (see Introduction), and more recently, by 
CryoEM. For most of these modifications, the responsible 
enzymes and, when relevant, the antisense snoRNA guides 
have been identified and characterized. We made use of this 

knowledge to analyse specific rRNA base methylations of the 
18S rRNA in human cells lacking individual modifications by 
targeted nanopore direct RNA-seq as a proof-of-concept.

For this, we generated human colon carcinoma-derived cell 
lines (HCT116) genetically engineered by CRISPR-Cas9 gen
ome editing to harbour either a knock-out (KO) or a catalytic- 
dead variant (MUT) of selected methyltransferases (see 
Material and Methods for details). The cell lines and affected 
modifications are listed in Table 1. The METTL5 KO cell line 
was described previously, and it lacks the m6A modification at 

Figure 1. Setup of targeted direct rRNA sequencing. (A) a custom adapter is employed for sequencing of the human 18S rRNA (direct rRNA-seq) in samples 
representing different modification status: wild type (WT), knock out/mutant (KO/MUT) or in vitro transcribed rRNA (IVT). The custom adapters consist of an universal 
oligo A annealed to a sequence specific oligo B. The sequence-specific part of oligo B (light blue) has a length of 10 nts and anneals with the 3′ end of the 18S rRNA 
(green). (B) Overview of the analysis workflow. BAM files from the direct rRNA-sequencing (A) are compared pairwise employing JACUSA2 call-2, which calculates 
scores for different error profiles (Mismatch, Deletion, Insertion). These scores can be combined to feature sets, taking only the target site, or as well the 5-mer 
context into account. Significant outliers are identified by Local outlier Factorization (LOF). (C) Abundance of modification types on the 18S rRNA. (D) Coverage of 
nanopore direct rRNA-seq of 18S IVT and 18S rRNA from HCT116 WT cells sequenced on MinION R9.4.1 flow cells. Allele frequency threshold = 0.2. Mismatches are 
indicated by IGV default colours. (E) Violin plot summarizing the JACUSA2 call-2 analysis of the 18S rRNA from HCT116 WT cells and 18S IVT. Shown is the JACUSA Mis 
score for all modification types on fast basecalled data as indicated. Left panel: analysis of a single replicate, right panel: analysis of three replicates.
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position 1832 of the human 18S rRNA [37]. In addition, we 
generated cell lines that express catalytic dead variants of 
DIMT1L and WBSCR22 (Figure 2). DIMT1L catalyses the 
double m6

2A modification at positions 1850 and 1851 of the 
18S rRNA [9,38,39], whereas WBSCR22 catalyses 
the m7G modification at position 1639 of the 18S rRNA 

[9,40,41]. The conserved D82 amino acid in the catalytic 
pocket of WBSCR22 (Figure 2A) was mutated to a lysine, 
resulting in loss of a diagnostic EcoRV site as monitored by 
differential restriction digest (Figure 2B). As expected, in cells 
expressing the WBSCR22 D82K variant, the methylation of 
G1639 was no longer detected in a primer extension assay 

Table 1. Genetically engineered HCT116 cell lines analysed by direct rRNA-seq.

Cell line Missing modification Reference modification enzyme

HCT116 WT -
HCT116 WBSCR22D82K/D82K 18S m7G1639 [9,40,41]
HCT116 METTL5−/− 18S m6A1832 [37,49]
HCT116 DIMT1LY131G/Y131G 18S m6

2A1850 m6
2A1851 [9,38,39]

HCT116 SNORD13−/− 18S ac4C1842 [43,50,51]

Figure 2. Generation and validation of human cell lines expressing a catalytically inactive form of the 18S rRNA methyltransferases WBSCR22 or DIMT1L. A mutation 
encoding a single amino-acid substitution in the catalytic pocket of the methyltransferase (Y131G for DIMT1L, D82K for WBSCR22), was introduced on both alleles of 
HCT116 cells by CRISPR-Cas9 genome editing. (A) 3-D model based on the yeast homolog of WBSCR22, BUD23 (PDB 4QTU). The mutated residue is highlighted in 
green in the catalytic pocket of the enzyme. The methyl donor cofactor, S-adenosyl methionine (SAM), is depicted in stick representation with the methyl group to be 
transferred as a grey sphere. (B) Diagnostic evaluation by differential restriction of PCR fragments, and by DNA sequencing. The PCR products were amplified from 
genomic DNA extracted from the mutant cell line and the isogenic control (WT). The primers used (blue arrows) and the size of the expected fragments upon EcoRV 
digestion are shown. Red box, catalytic domain. Restriction digests were analysed by agarose electrophoresis followed by ethidium bromide staining. DNA 
sequencing profiles at the mutation site are shown. (C) Loss of RNA modification in the mutant cell line was confirmed by primer extension assay performed 
with oligo LD2120 on total RNA cleaved at m7G following treatment with NaBH4 and aniline as in [52]. (D) 3-D model based on human DIMT1L (PDB 1ZQ9), coloured 
elements as in A. (E) Diagnostic evaluation of differential restriction of PCR fragments after BstNI digestion as in B. (F) For DIMT1L, the primer extension was 
performed on total RNA with oligonucleotide LD2141 as in [9]. Loss of modification was further confirmed by HPLC analysis (data not shown).
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(Figure 2C) following NaBH4-aniline treatment [44]. In case 
of DIMT1L, the Y131 residue, located in the catalytic pocket 
of the enzyme, was substituted by a glycine (Figure 2D). The 
introduction of the mutation resulted in the gain of a BstNI 
restriction site (Figure 2E). A primer extension assay revealed 
that the DIMT1L Y131G variant led to loss of the A1850/1851 

double dimethylation (Figure 2F), a result which was further 
confirmed by HPLC analysis (data not shown). Note that the 
double m6

2A modification is rather ‘bulky’ and is naturally 
causing a reverse transcription drop-off. For both WBSCR22 
and DIMT1L, the bi-allelic knock-in was confirmed by DNA 
sequencing of the region of interest (Figure 2B,E).

These cell lines were employed for pairwise comparisons 
with the isogenic WT control (Figure 3). We detected char
acteristic base calling errors in the WT control in all analysed 
cases as higher Mismatch frequencies in IGV snapshots 
(Figure 3A–C) in comparison to WT samples. However, dif
ferent modification types affected base calling differently. 
Strikingly, m7G1639 affected basecalling not only at the actual 
modified position but also strongly at the neighbouring resi
dues (−3 to +3), providing a powerful signature (Figure 3A). 
On the other hand, the m6A and m6

2A modifications resulted 
mainly in basecalling errors at the target site (Figure 3B,C).

The pairwise comparison of WT and KO/MUT cell lines 
with JACUSA2 call-2 and 1,000 reads per condition revealed 

Figure 3. Detection of site-specific modifications in genetically engineered HCT116 cells by nanopore direct rRNA-seq and JACUSA2 call-2. HCT116 cells as listed in 
Table 1 were subjected to nanopore direct rRNA-seq, either on a MinION or Flongle flow cell as indicated. (A-C) IGV snapshots of the regions of interest from MinION 
or Flongle sequencing as indicated. The target site as well as other described modifications are annotated. Allele frequency threshold = 0.2. (D,F,H) Barplots of the 
pairwise comparisons of MinION derived data by JACUSA2 call-2 analysis considering the Mismatch score. Significant outliers detected by Local outlier Factorization 
(contamination value = 0.001 for WBSCR22 and METTL5, 0.002 for DIMT1L) are labelled in blue. Outliers in the 5-mer context of the target site are marked by ‘NB’. (E, 
G,I) Barplots of the pairwise comparisons of Flongle derived data, as in D,F,H. D,E) analysis of 18S m7G1639 employing HCT116 WBSCR22D82K/D82K. (F,G) analysis of 
18S m6

2A1850 m6
2A1851 employing HCT116 DIMT1LY131G/Y131G. (H,I) analysis of 18S m6A1832 employing HCT116 METTL5−/−.
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high JACUSA2 Mis scores for the target sites, but not for non- 
related positions (Figure 3D-I). Here, we considered modifi
cations as outliers (i.e. unusual JACUSA2 scores within a set 
of positions) employing the previously introduced Local 
Outlier Factorization (LOF) [42] to rank positions by their 
degree of outlierness (see Methods). The LOF approach has 
two hyperparameters: neighbourhood size and contamination. 
The contamination value determines the proportion of points 
with the highest LOF scores to be called as outliers. As we 
expect to find only one or two outliers, we applied here strict 
contamination values of 0.001 (WBSCR22, METTL5) and 
0.002 (DIMT1L), respectively, which corresponds to 0.1% 
and 0.2% of sites. Strikingly, for all analysed modifications, 
the target site as well as one to two adjacent sites were 
identified as significant outliers (blue) (Figure 3D-I).

Here, we used the JACUSA2 Mis score to call modification 
sites. However, we would like to note that depending on the 
data and modification type, also the Deletion and Insertion 
score as well as the 5-mer context may improve modification 
calling (Table S5).

Current input requirements may preclude the use of nano
pore direct RNA-seq for samples with limited availability. 
Furthermore, multiplexing of samples with barcoding is cur
rently not officially supported for direct RNA-seq by ONT, 
increasing the cost for direct RNA-seq experiments. To over
come these problems, we aimed to transfer the targeted direct 
rRNA-seq approach described above from the standard 
MinION flow cells (512 channels with 4 pores each) to the 
recently introduced smaller Flongle flow cells (126 pores), 
which require less RNA input. The overall results of the 
JACUSA2 analysis were highly comparable for MinION and 
Flongle flow cell-derived data (Figure 3 compares panels D, F, 
and H with E, G, and I). Also, the IGV snapshots for the 
analysed modification sites were remarkably comparable 
between MinION and Flongle data (Figure 3A–C, compare 
upper and lower panels).

In summary, all analysed base methylation sites on the 18S 
rRNA were detected with JACUSA2 in the MinION flow cell 
data as well as in the Flongle flow cell data. In addition, the 
generated mismatch profile was highly similar between 
MinION and Flongle sequencing. Overall, the Flongle-based 
approach enables the analysis of low input samples such as 
patient-derived material making it amenable to clinical 
biology.

The optimal coverage is determined by the modification 
type

To exclude the impact of coverage on our analysis, we used 
1,000 reads throughout this work to analyse differential RNA 
modifications (Figure 3). To elucidate whether a higher num
ber of reads would be beneficial for the analysis, or if an even 
lower number of reads may be useful, we sampled different 
read numbers from our MinION datasets. As expected, the 
difference between the JACUSA2 score of the target site and 
the median JACUSA2 score increases, when more reads are 
considered for analysis (Figure S6A-C, left panels). To evalu
ate the robustness of outlier identification, we calculated the 

normalized distance of the target site LOF scores to the 
median LOF score (Figure S6A-C, right panels). 
Surprisingly, we noticed a small decrease in the normalized 
LOF score distance for WBSCR22 (Figure S6A, right panel), 
which was, on the other hand, accompanied by a decrease in 
the standard deviation at higher read numbers. Robustness in 
the detection of the METTL5-catalysed m6A modification was 
increased by higher read numbers, as indicated by the 
increased normalized LOF score distance and decreased stan
dard deviation at 5,000 and 10,000 reads, respectively (Figure 
S6C, right panel). For the DIMT1L target sites, the identifica
tion is mostly independent of the number of analysed reads 
(Figure S6B). In summary, 1,000 reads are sufficient to detect 
the analysed modifications. In most cases, more reads are not 
beneficial and less reads are sufficient.

Nanopore direct rRNA-seq is suitable to estimate 
modification levels

As described above, in a clear cut situation, when a cell line 
harbouring a knock-out (KO) or catalytically dead variant 
(MUT) of an enzyme is compared to a wild-type cell line 
(Figure 3, Figure S6), 1,000 reads were well suited for the 
analysis of differential RNA modifications. However, in phy
siological or pathological contexts, more subtle changes in 
modification levels are often expected. We were therefore 
interested to learn to what extent rRNA modifications could 
also be analysed at substoichiometric levels with our 
approach. We approached this question both experimentally 
and in silico by mixing either RNA or sequencing reads from 
WT and KO/MUT at various ratios. We first sampled in silico 
a total of 1,000 reads from all samples. For the reference ‘Mix’ 
sample, different ratios of WT and KO/MUT reads were 
bioinformatically mixed as indicated (Figure 4A–D). Five 
replicate samples from all mixing ratios were analysed by 
pairwise JACUSA2 comparison as outlined above. 
Interestingly, m7G1639 and m6

2A1850/1851 were consistently 
detected with only 5–10% modified reads, whereas m6A1832 
had a detection threshold of around 25%. Importantly, an 
increase in the JACUSA2 score with increasing modification 
frequency was detected for all analysed modification sites 
(Figure 4A–D), indicating that nanopore direct rRNA-seq 
can also be used for estimation of modification levels. For 
the m7G and m6

2A1850 modifications, the JACUSA2 score 
seems to approach saturation (Figure 4A,C).

To validate these findings, experimental mixing analyses 
were performed with WBSCR22 MUT and METTL5 KO 
RNAs (Figure 4A,B). Importantly, the results of the 
experimental mixing analyses were comparable to the in 
silico mixing analyses. For both analysed modification 
types, the JACUSA2 score increases with increasing mod
ification levels and approached saturation at higher mod
ification levels (Figure 4A,B). In conclusion, we show that 
nanopore direct rRNA-seq in combination with JACUSA2 
analysis can be used to estimate modification levels pro
viding an appropriate calibration curve is established that 
may also be generated in silico.
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Beyond methylation – detection of acetylcytidine

In human cells, NAT10, which is essential for pre-18S rRNA 
processing, works together with SNORD13 (U13) to install the 
acetylation of 18S at position C1842 [43,50,51], which is one of the 
two ac4C modifications found on the 18S rRNA. We generated 
an HCT116 SNORD13 KO cell line by CRISPR-Cas9 genome 
editing (Figure S7A,B). The loss of C1842 acetylation in this cell 
line was validated by a primer extension assay (Figure S7C) and 
direct rRNA-seq – JACUSA2 analysis that identified ac4C1842 as 
a bona fide outlier (Figure 5A,B).

As the identification of small changes in rRNA modifica
tion levels is presumably of biological and clinical interest, we 
compared our approach to an orthogonal method, namely 
a C-to-T misincorporation assay based on borohydride reduc
tion [45–47]. To simulate a scenario of small changes in 
acetylation, we analysed WT/SNORD13 KO mixtures with 
only 10%, 20%, and 30% of KO RNA (Figure 5C,D). 
Nanopore direct rRNA-seq revealed a gradual increase of 
JACUSA2 scores in pairwise comparison to the WT RNA 
(Figure 5C). Interestingly, JACUSA2 is particularly sensitive 
to relatively small changes in C1842 acetylation. On the other 
hand, the C-to-T misincorporation assay could not discrimi
nate between 100% WT and 90% WT/10% SNORD13 KO, 
revealing an inherent limitation of this approach (Figure 5D).

We therefore concluded that nanopore direct rRNA-seq 
can detect even small changes in modification levels, whereas 
the misincorporation assay is only suitable to detect larger 
differences.

In summary, we established the nanopore-based targeted 
direct RNA-sequencing of human ribosomal RNAs and ana
lysed widespread rRNA modifications employing JACUSA2. 
We show that direct rRNA-seq on the nanopore can be scaled 
down to the Flongle device, enabling the analysis of clinical or 
biological samples with limited availability.

Discussion

Modifications of human rRNAs have been characterized for 
many years, and until recently were considered as relatively 
constitutive. Emerging evidence however supports the 
hypothesis of ribosomal heterogeneity [53], which includes 
the production of differentially modified ribosomes that may 
contribute to the aetiology and progression of several diseases 
including cancer, developmental and cardiovascular disorders.

Thus, there is a need to develop techniques for the in-depth 
characterization of the entire rRNA modification repertoire in 
a quantitative fashion. Ideally, such techniques should be amen
able to low input material and high throughput analysis.

Consequently, the sequence specific and quantitative ana
lyses of various RNA modification types with moderate 
amounts of input material are progressing fast with the advent 
of the direct RNA-sequencing method. However, current 
analyses have focused mostly on highly specific types of 
RNA modifications as m6A and pseudouridine [28,30,31,34– 
36], or did not address dynamic changes in human samples 
with clinical relevance [32,33].

Figure 4. Analysis of the influence of modification levels on the JACUS2A score determined by in silico or experimental mixing analysis. For the in silico mixing 
analysis 1,000 reads were downsampled from the MinION sequencing data shown in Figure 3. The ‘Mix’ sample was composed of modified (WT) and unmodified (KO/ 
MUT) reads as indicated that were derived from the downsampled data with 5 different seeds. For the experimental mixing analysis, RNA from WT and WBSCR22 
MUT (A) or METTL5 KO (B) cell lines was mixed in the indicated amounts and subjected to direct rRNA-seq on Flongle flow cells. As for the in silico mixing, they were 
analysed with 1,000 sampled reads. JACUSA2 call-2 analysis considering the Mismatch score. (A) Analysis of 18S m7G1639 in HCT116 WT and WBSCR22 MUT cells. (B) 
Analysis of 18S m6A1832 in HCT116 WT and METTL5 KO cells. (C,D) analysis of 18S m6

2A1850 or m6
2A1851, respectively, employing HCT116 WT and DIMT1L MUT cells.
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Here, we established the targeted direct RNA-seq of human 
ribosomal RNAs with a selection step involving the use of custom 
adapters (direct rRNA-seq). Our targeted approach ensures that 
only properly processed rRNAs with defined 3′ ends are sequenced 
[54–56], and no unfaithfully processed RNAs (Figure S1). We 
benchmarked our JACUSA2-based approach against other tools 
designed to detect RNA modifications in direct RNA-seq data and 
demonstrate that JACUSA2 may be considered especially for the 
detection of pseudouridines and the diverse class of ‘other’ mod
ifications (Figure 1E, Figure S2), whereas the detection of 2′- 
O-ribose methylation sites by different tools differs substantially 
between the different nucleobases (Figure S3). In future work, 
there will be a need to develop more sophisticated models that 
also consider, for example, the context. Based on the comparison 
of HCT116 WT and IVT samples, we identified almost all known 
modification sites on the basis of positive JACUSA2 Mis scores 
(Figure 1E). This validates the general ability of JACUSA2 to 
identify differential rRNA modifications of all types (pseudouri
dine, 2’-O methylation of ribose, m1acp3psU, 
ac4C, m7G, m6A, m6

2A on the 18S rRNA). However, the main 
application of JACUSA2 and the comprehensive workflow pre
sented here is the comparative analysis of biological or clinical 
samples that differ in a limited number of modification sites. In 
line with previous findings [31,32], we show that Mismatches are 
the main determinant for the identification of modification sites 
(Figure 1E). In specific cases, for example Cm modifications, also 
the Deletion and Insertion scores as well as the 5-mer context may 

be considered (Figure S5). The rational of taking the 5-mer context 
into account is based on the fact that the current nanopore protein 
(R9.4.1) covers five nucleotides at a time. This implies that in case 
of an RNA modification, also the basecalling at neighbouring sites 
may be altered.

It is important to emphasize that our prediction of modification 
sites with JACUSA2 does not rely on any prior knowledge, as we 
only use modification maps (such as those established experimen
tally by mass spectrometry by Taoka et al. [8]) for post hoc evalua
tion of our results. As for every nanopore error-profile-based 
approach, the chemical nature of de novo identified RNA mod
ification sites needs to be determined by other methods.

Employing a collection of genetically engineered HCT116 cell 
lines lacking individual modifications (Figure 2), we demonstrated 
that the recently introduced JACUSA2 software [31] detects all 
targeted 18S rRNA base methylations in sequencing data pro
duced with the standard MinION flow cells, namely m7G1639, m6 

A1832, and the double dimethylation m6
2A1850 m6

2A1851. These base 
modifications cause distinct basecalling errors that are reflected by 
the Mismatch scores calculated by JACUSA2 (Figure 3). 
Importantly, we could detect rRNA modifications just as effi
ciently with the small-scale Flongle flow cells (Figure 3), enabling 
the analysis of precious material available only in limited amounts. 
This is of particular interest as barcoding of direct RNA-seq 
libraries is currently not officially supported by Oxford 
Nanopore Technologies. Sequencing on the Flongle flow cells 
yields data with comparable quality. All base methylations were 

Figure 5. Analysis of 18S ac4C1842 by nanopore direct rRNA-seq and an orthogonal method employing HCT116 SNORD13 KO cells. (A) IGV snapshots of the region of 
interest from HCT116 WT and SNORD13 KO cells as indicated. The target site is annotated. Allele frequency threshold = 0.18. (B) Barplots of the pairwise JACUSA2 
call-2 analysis. Significant outliers detected by LOF (contamination value = 0.001) are labelled in blue. JACUSA2 Mismatch score was considered. (C) JACUSA2 Mis 
scores of pairwise comparisons of different experimental RNA mixes against the HCT116 WT RNA. Reads were downsampled to 1,000 reads with different seeds (n =  
15). (D) 18S helix 45 ac4C misincorporation assay based on NaCNBH3 reduction and TGIRT-III reverse transcription for RNA mixtures as indicated. Left panel: Sanger 
sequencing traces. Right panel: quantification of the C-to-T misincorporation.
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identified as significant outliers in this analysis based on 1,000 
reads employing the LOF method. The LOF method determines 
sites that are significantly different from their neighbours as out
liers, thus we recommend it for outlier detection when the 
expected number of differential sites is known or expected to be 
small. In case the number of differentially modified sites cannot be 
estimated a priori, the contamination value (which defines how 
many sites are identified as outliers), can be fitted automatically by 
sklearn.neighbours.LocalOutlierFactor, as described [42]. We do 
not recommend the LOF method for cases with a high number of 
differential sites as the WT vs. IVT comparison. Here, we recom
mend to identify candidate sites based on the JACUSA2 score (see 
Figure 1E). By downsampling analyses of different read numbers 
from the MinION data, we show that, remarkably, as little as 300 to 
500 reads were sufficient to identify the analysed modification sites 
(Figure S6). With exception of the METTL5-catalysed m
6A modification, more reads did not improve results.

We show that the relative modification levels of selected 
base modifications can be estimated from the JACUSA2 
scores based on a calibration curve generated experimentally 
or in silico (Figure 4). In most analysed cases, the JACUSA2 
score approaches saturation at higher modification levels 
(Figure 4A–D); thus, an estimation of modification levels 
should always be based on an appropriate calibration curve. 
Only in case of METTL5-catalysed m6A1832, we oberserved 
some offset between experimental and in silico mixing data 
(Figure 4B). We speculate that this may be caused by slight 
variations of the 18S m6A1832 level in the different biological 
replicates of HCT116 WT samples used.

Besides the different base methylation sites, the human 18S 
rRNA harbours in addition two acetylated cytidines. To 
further expand the repertoire of modifications that may be 
analysed by nanopore direct rRNA-seq and JACUSA2, we 
made use of an HCT116 SNORD13 KO cell line. SNORD13 
works together with NAT10 to install 18S ac4C1842 [43,50,51]. 
Importantly, ac4C1842 was identified as a bona fide outlier in 
the comparison of SNORD13 KO cells to HCT116 WT cells 
(Figure 5A,B). Nanopore direct rRNA-seq only requires small 
amounts of input material and is suitable to identify changes 
in different modification types at a time. However, we were as 
well interested in the sensitivity of the method to identify also 
small changes in modifications that may occur in samples 
with biological or clinical relevance. To this end, we compared 
JACUSA2 to an orthogonal validation method based on bor
ohydride reduction of ac4C and subsequent reverse transcrip
tion misincorporation (Figure 5D). Interestingly, mixture 
experiments with only small amounts of KO RNA, revealed 
that direct rRNA-seq – JACUSA2 is particularly sensitive to 
small changes in RNA modification (Figure 5).

Although we did not cover the complete repertoire of 
rRNA modifications by dedicated KO cell lines at the time, 
our data suggest that our workflow captures many if not all 
rRNA modifications through basecalling error (Mismatch, 
Insertion, Deletion) analysis.

In this work, we applied JACUSA2 call-2 in pairwise com
parisons to identify differences in rRNA modification. 
A number of other computational pipelines are already avail
able in the literature to analyse rRNA modifications in 

nanopore direct RNA-seq data and were compared here to 
JACUSA2 (Figure S2), including Nanocompore [36], EpiNano 
[35], xPore [34], and Eligos2 [30], which are either based on 
the detection of basecalling errors, such as in the case of 
JACUSA2, or which infer modification pattern from changes 
in the current signal traces. A recently introduced approach, 
based on signalAlign, estimates modification probabilities on 
a single read level, but is limited to and only looks at pre
viously described modification sites [33]. Furthermore, some 
methods are until now only established for specific modifica
tion types as m6A or pseudouridine [28,32]. The major chal
lenge in the analysis of RNA modifications compared to DNA 
modifications is the diversity of modification types. 
Additionally, the expression of different rRNA variants may 
complicate the analysis.

Importantly, JACUSA2 does not depend on prior knowledge 
or on training of complex models to identify modification sites. 
However, in this work, we took advantage of the accurate map
ping of rRNA modification sites by mass spectrometry for post 
hoc validation of our findings. In contrast to some other work
flows, JACUSA2 supports the handling of replicate samples as 
well as pairwise comparison [31], enabling either the compar
ison to an unmodified reference sequence or the identification of 
differences between biological and clinical samples. JACUSA2 
can be used with both Guppy basecalling modes (fast vs. HAC), 
but of course all analysed samples should be basecalled identi
cally. For the detection of methylation and acetylation, we 
recommend the fast basecalling mode (Figure S2). We show 
here that JACUSA2 is not limited to specific modification 
types but can potentially be used to map and quantify all mod
ification types that cause basecalling errors (Mismatch, Deletion, 
Insertion). Thus, JACUSA2 could be applied also to the detec
tion of new modification sites, whose chemical nature could be 
later determined by other methods. It is noteworthy to mention 
that when we performed comparative analysis we realized that 
JACUSA2 was also less demanding on computing time than 
many other algorithms available to date (Table S4).

In conclusion, we established a targeted nanopore direct 
RNA-seq strategy for human rRNA and detection of modifi
cations by JACUSA2. The down scaling to Flongle flow cells 
enables the study of samples with limited availability. Future 
work will focus on the identification of differential modifica
tion sites in samples of biological interest and clinical rele
vance and to understand the biological consequences of 
altered modification patterns.
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