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ABSTRACT 
Ribosome biogenesis is initiated in the nucleolus, a multiphase biomolecular 

condensate formed by liquid-liquid phase separation. The nucleolus is a powerful 

disease biomarker and stress biosensor whose morphology reflects its function. 

Here we have used digital holographic microscopy (DHM), a label-free quantitative 

phase contrast microscopy technique, to detect nucleoli in adherent and suspension 

cells. Subtle nucleolar alterations induced by drug treatment or by depletion of 

ribosomal proteins were efficiently detected by DHM. We trained convolutional 

neural networks to detect and quantify nucleoli automatically on DHM images of 

cultured human cells (HeLa). Holograms containing cell optical thickness information 

allowed us to define a novel nucleolar index which we used to distinguish nucleoli 

whose material state had been optogenetically modulated. We conclude that DHM is 

a powerful tool for quantitatively characterizing nucleoli, including material state, 

without any staining.  
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INTRODUCTION 
Ribosomes are essential nanomachines responsible for protein production in cells. 

Ribosome biogenesis is initiated in the nucleolus, a dynamic biomolecular 

condensate formed by liquid-liquid phase separation (LLPS) (Lafontaine et al, 2020). 

The nucleolus is the most prominent membraneless organelle in the cell nucleus, 

whose morphology reflects its role in ribosome biogenesis and other functions 

important for cell homeostasis (Boisvert et al, 2007; Pederson, 1998). The nucleolus 

is rich in RNA and proteins that associate transiently through multivalent weak 

interactions to perform functions (Feric et al, 2016; Mitrea et al, 2016). The dynamic 

nature of the nucleolus can be explained in part by its liquid properties. These can be 

optogenetically tuned, with an impact on function (Zhu et al, 2019).   

The nucleolus is a potent disease biomarker and stress biosensor, as its size, shape, 

and number per cell nucleus are markedly altered in cancer, viral infections, 

neurodegeneration, and ageing (Boulon et al, 2010; Derenzini et al, 2009; Salvetti & 

Greco, 2014; Tiku & Antebi, 2018). Despite its remarkable properties, the nucleolus 

remains largely underused in clinical work for lack of easy-to-implement, robust 

quantitative tools.  

Nucleolar structure has been abundantly studied at the light and electron microscopy 

levels for many years (Hernandez-Verdun et al, 2010). In human cells, the nucleolus 

is organized in three major layers, nested like Russian dolls, and encased in a 

sheath of perinucleolar chromatin. The three main internal layers are the fibrillar 

center (FC), the dense fibrillar component (DFC), and the granular component (GC). 

A single GC contains multiple modules, each comprising an FC core surrounded by 

a DFC.  

A wide range of microscopy techniques have been used in combination with 

dedicated staining methods to detect the nucleolus quantitatively in cultured cells 

and tissue biopsies. In principle, this requires either particular labeling chemistry, for 

example silver nitrate-based AgNOR staining of the argyrophilic proteins which 

abound in the nucleolus (Bartholome et al, 2019; Ploton et al, 1986; Thelen et al, 

2021), the use of specific antibodies for immunodetection, or expression of 

fluorescently tagged proteins for direct detection (Nicolas et al, 2016; Stamatopoulou 

et al, 2018; Stenstrom et al, 2020). More recently, super-resolution techniques have 

been applied to fixed and live samples, revealing the existence of additional 
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nucleolar subphases (Ide et al, 2020; Yao et al, 2019). While these techniques are 

extremely powerful in describing the most intricate details of this fascinating 

biomolecular condensate, their high sophistication remains a clear obstacle to their 

routine use. 

Digital holographic microscopy (DHM), invented by Dennis Gabor in 1948 (Gabor, 

1948), is a non-invasive label-free quantitative interferometric technique that can be 

applied with minimal manipulation to any transparent specimen, such as fixed or live 

cells. Unlike most microscopy techniques, which record absorption and transmission 

of light from an object, DHM records shifts in the light wavefront with respect to a 

reference wavefront, producing a digital hologram from which a phase image is 

extracted digitally by numerical reconstruction (Fig 1). A key feature distinguishing 

DHM from optical-contrast-enhancing imaging techniques is that in DHM, the 

intensity value of a pixel has a direct physical meaning: it is proportional to the 

optical thickness (also called optical path length) of the cell, which is the physical 

height of the cell (or cell thickness) multiplied by its refractive index at that point 

(Picart, 2015; Picart & Li, 2012). Because of well-described optical artifacts, such 

quantitative information cannot be extracted from the images obtained by 

conventional brightfield microscopy or other contrast-enhancing imaging techniques 

such as Zernicke’s’ phase-contrast (PhC) microscopy or Smith and Nomarski’s 

differential interference contrast (DIC) microscopy (see (Marquet et al, 2005) for 

details). DHM captures can be displayed as intuitive pseudo 3-D images resembling 

topographic maps, where the height is determined by the brightness of each pixel 

(Fig 1 and Fig 2A). Thus far, DHM has been exploited in material science, cell 

biology, and cancer studies. It has notably been used to monitor cell structure and 

dynamics in various biological and biomedical contexts, such as cell growth 

monitoring, cell dry mass estimation (Barer, 1952), drug-induced cytoskeleton 

dynamics (Kemper et al, 2006), neuronal growth, and metastasis progression (for a 

review see (Marquet et al, 2014). DHM is also particularly well suited for imaging 

liquid samples and performing in-flow analyses (Singh et al, 2017).   

Here we have used DHM imaging of human cells combined with deep learning to 

detect and characterize the nucleolus quantitatively without any staining. The 

numerical parameters extracted include the mean number of nucleoli per cell 

nucleus, the mean nucleolar area, the mean nucleolar-to-nuclear area ratio, and the 
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nucleolar optical thickness, a novel index which detects material states in the 

nucleolus. 

 

 

 

RESULTS & DISCUSSION 

Detection of the nucleolus by digital holographic microscopy 
Unlike other phase-contrast-generating techniques and brightfield, digital holographic 

microscopy is quantitative, because in a DHM phase image the intensity of each 

pixel reflects the optical thickness of the cell, i.e. its physical height multiplied by its 

refractive index (Picart, 2015; Picart & Li, 2012). With this in mind, we expected 

optically dense cell structures, such as the nucleolus, to appear on DHM phase 

images as bright spots, and, less dense objects, such as vacuoles or the cytoplasm, 

as less intense areas. As shown below, this is indeed the case. 
To test if DHM is suitable for detecting nucleoli, various cell lines were observed, 

starting with a common model: cervix carcinoma cells (HeLa). Cells were grown in a 

channel slide and observed directly under the microscope after brief fixation. It was 

also possible to observe live cells (see below). The nucleus contour was clearly 

identifiable in all cells (Fig 2A, blue arrowheads). Within the nucleus, prominent 

structures reminiscent of nucleoli were detected (red arrows). From the quantitative 

information embedded in the DHM phase image, a “3-D” map was generated from 

pixel intensities, revealing the optical thicknesses of individual cell substructures (Fig 
2A, right). In such maps, the structures reminiscent of nucleoli appeared as sharp 

red peaks. 

In our initial work, we used a standard digital holographic microscope with a beam 

path exactly as described in Figure 1 (e.g. the phase image and 3-D display in Fig 
2A). Soon we realized that if we wanted our method to be used in other laboratories 

worldwide, it would be greatly advantageous to use a “plug-in” device that would 

convert any inverted microscope to DHM. In the remainder of our work, we used a 

purposely built DHM adaptor (QMOD), also referred to as ‘off-axis differential 

interferometer’, directly connected to a classical CCD camera and to an inverted 

microscope (see Fig EV1). In this easy-to-implement set up (see Materials and 

Methods), the beam path was slightly more complex than that described in Figure 1, 

but the principle of quantitative interferometry was exactly the same.  
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A major advantage of the QMOD is that DHM can be readily combined with 

fluorescence imaging to perform correlative DHM-fluorescence microcopy. This is 

what we did to ascertain that the prominent structures detected in the nucleus were 

indeed nucleoli (Fig 2B-E). Initially, we used HeLa cells stably expressing the 

nucleolar protein fibrillarin fused to a green fluorescent tag (HeLa-FBL-GFP). The 

nucleolus consists of three main layers nested like Russian dolls (Thiry & Lafontaine, 

2005), and fibrillarin marks the middle layer or dense fibrillar component. Cells were 

stained with DAPI, which labels the DNA-rich nucleoplasm. Comparing the 

fluorescence signal (fibrillarin, GFP) with the DHM phase made it obvious that the 

prominent nuclear substructures detected by DHM were nucleoli. The nucleolus is 

lined by a layer of condensed chromatin, the so-called perinucleolar chromatin 

forming a distinctive DNA “ring” around the nucleolus. This ring was visible in the 

DAPI images (see arrowheads in Fig 2B, DAPI inset). The presence of DNA rings 

circling the prominent nuclear foci observed in the DHM phase images further 

confirmed their identity as nucleoli. Quantification of the fluorescence and DHM 

signals demonstrated an excellent overlap between phase intensity and GFP peaks, 

formally confirming colocalization (Fig 2D). 

To extend our observations to other cells, we used a colon carcinoma cell line 

(HCT116), also stably expressing a FBL-GFP construct (Fig 2C). In these cells, the 

DHM phase images again revealed prominent signals in the nucleus, again 

confirmed to be nucleoli on the basis of colocalization with fibrillarin and counter 

staining with DAPI (Fig 2C). 

In addition to using fluorescently tagged nucleolar proteins, we detected endogenous 

proteins by indirect immunofluorescence with specific antibodies. In this experiment, 

we used both adherent cells (HeLa) and suspension cells (lymphoblastoid cells, 

LCL) and chose to detect the nucleolar protein PES1 (pescadillo ribosomal 

biogenesis factor 1, Fig 2E). PES1 labels the cortical layer of the nucleolus or 

granular component. In both cases, we observed excellent colocalization between 

the DHM phase and the fluorescence signal (Fig 2E). This again confirmed that the 

prominent nuclear foci detected by DHM were nucleoli.  

Finally, four additional cell lines were observed: another type of cervix carcinoma 

cells (SiHa), bone cancer cells (U2OS), breast cancer cells (MCF7) and lung cancer 

cells (A549) (Fig EV2). All cells displayed prominent nucleolar signals, similar to 

those observed in HeLa and HCT116 cells. 
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In conclusion, DHM allows robust stain-free detection of the nucleolus in adherent 

and suspension cells of various tissue origins. 

 

 

 

Nucleolar structure alterations are detectable by digital holographic 
microscopy 
Morphological alterations of the nucleolus are associated with diverse pathological 

conditions ranging from cancer, viral infection, and neurodegeneration to various 

types of cell stress and even ageing (Boulon et al., 2010; Derenzini et al., 2009; Tiku 

& Antebi, 2018). 

We wondered if such nucleolar alterations could be detected by DHM. To test this 

possibility, we induced nucleolar alterations by treating cells with an array of drugs 

known to disrupt the nucleolus (Burger et al, 2010) or by depleting them of factors 

important for nucleolar structure maintenance (Nicolas et al., 2016; Stamatopoulou 

et al., 2018). We treated HeLa cells stably expressing an FBL-GFP construct with 

either DRB (5,6-dichloro-1-β-D-ribofuranosyl-1H-benzimidazole), roscovitine, 

actinomycin D, or CX-5461, or depleted them of ribosomal protein uL5 (formerly 

RPL11) or uL18 (RPL5) (Fig 3). Using correlative DHM-fluorescence microscopy, we 

detected fibrillarin and found each treatment to affect nucleolar structure deeply, as 

previously described in the literature (Fig 3, GFP panels). Comparing the 

fluorescence and DHM phase signals revealed that each alteration was perfectly 

detectable by DHM (Fig 3). Considering the absence of staining, the definition of 

nucleolar granules was truly exceptional in DHM phase images (see e.g. DRB 

images). 

In conclusion, DHM can readily detect fine alterations of nucleolar structure induced 

by pharmacological treatment or by depletion of ribosomal proteins important for 

nucleolar structure maintenance. 

The nucleolus is visible only during the interphase, being known to disassemble at 

the onset and reassemble at the end of mitosis (Lafontaine et al., 2020). We wanted 

to know if nucleolar disassembly and reassembly could be monitored by DHM. We 

thus performed live-cell imaging using DHM and concluded that it can (Movie 1).  
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As discussed above, nucleolar alterations induced by drug treatments can be 

visualized efficiently by DHM on fixed cells (Fig 3). To see if such drug-induced 

alterations could also be monitored dynamically in live cells, we seeded HeLa-FBL-

GFP cells into channel slides, added roscovitine, and imaged live cells every 30 

seconds for 3 hours. The drug-induced nucleolar alterations could indeed be 

followed in live cells by DHM, since the changes observed in the GFP channel were 

also obvious in the phase signal (Movie 2). Although not the subject of our study, 

another interesting observation emerged from the movies: we saw numerous 

cytoplasmic granules, presumably mRNA granules such as processing bodies, 

exploring rapidly the cytoplasmic space. This indicates that the technology is suitable 

for studying other biomolecular condensates. 

 

Quantitative analysis of the nucleolus detected by DHM, using deep learning 
Having shown that the nucleolus can be detected by DHM, we next sought to use 

the technique to extract types of quantitative information that would normally require 

specific staining. Typically, numerical parameters such as the mean number of 

nucleoli per cell nucleus, the mean nucleolar area, and the mean nucleolar-to-

nuclear area ratio have proved useful in clinical biology.  

A database of seventy-five fields of view was generated, each comprising about 

fifteen HeLa cells expressing fluorescently tagged fibrillarin. For each field of view, 

three images were captured: GFP, DAPI, and the DHM phase. This database was 

used to establish a fluorescent thresholding method for detecting nuclei and nucleoli 

and to train U-net convolutional neural networks. Importantly, all segmentation 

procedures were carefully benchmarked manually. 

First, by means of fluorescence only, the nucleus and nucleoli of each cell were 

segmented, respectively, by thresholding the DAPI and GFP signals (Figs 4A, 
EV3A, EV5A).  For detection of the nucleus, a simple thresholding method was 

sufficient, while for counting the nucleoli and establishing the nucleolar area, a more 

sophisticated thresholding method was required. This involved detecting local 

maxima, followed by ‘region growing’ (see Materials and Methods). During this 

thresholding, most cells undergoing mitosis (during which the nucleolus is 

disassembled, see (Lafontaine et al., 2020)) and multi-nucleated or incomplete cells 

(image edges) were filtered out. Importantly, only structures whose GFP signal was 

contained within a DAPI signal were considered to be nucleoli. The nucleolar 
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parameters extracted are presented in Figure 4B. Altogether, 2882 nucleoli from 

1206 cells were analyzed. This led to the conclusion that the mean number of 

nucleoli per HeLa cell was 2.39, the mean nucleolar area was 23.15 µm2, and the 

mean nucleolar-to-nuclear area was 0.14. 

Interestingly, the mean nucleolar area was reasonably well conserved in nuclei 

containing up to four nucleoli (Fig EV4A), after which it gradually increased. This 

was as expected if small nucleoli coalesce into larger ones in liquid-liquid like 

fashion, in agreement with the LLPS model of nucleolar assembly. If one views the 

nucleolus as a sphere, the projected areas of multiple small spheres cover a larger 

area than the projection of fewer large spheres. Assuming that a constant volume V 

is divided into N identical spheres, the radius of each sphere becomes proportional 

to (V/N)1/3. Hence, the surface projected by N spheres is proportional to N times 

(V/N)2/3, which is proportional to N1/3 (Fig EV4A). Also note that automatic counting 

of nucleoli on fluorescence images was carefully benchmarked with manual 

annotations and assessed with confusion matrices as well as sensitivity, specificity, 

and precision scores (Figs EV4B-C). The fraction of cells whose nucleoli were 

accurately counted (i.e., the precision) was superior to 83% for cells displaying one 

to four nucleoli. The sensitivity and specificity were >78% and >94%, respectively, 

when 1-4 nucleoli were counted. The most frequent errors were counting one too 

many nucleoli or missing one. The count was less accurate when five or more 

nucleoli were counted, but this situation was hardly ever encountered in cells (Fig 
EV4B). 

The next step was to identify the nucleus and nucleoli in cells directly on the DHM 

phase images, without using fluorescence signals. To achieve this, two 2D U-net 

convolutional neural networks were trained (Falk et al, 2019), one using as input the 

segmented DAPI signal, the other using the segmented GFP signal (Figs 4, EV3B-
C, EV5B). The database of images was divided into three groups of twenty-five fields 

of view each. Two groups were combined for training and the third was used for 

testing. The operation was reiterated twice until each group had been used once for 

testing. All seventy-five fields of view were then used for automatic extraction of 

numerical features. As an illustration, a representative GFP image was segmented 

by thresholding and the corresponding DHM phase by deep learning, with nearly 

identical results (Figs 4A, EV5). The data show that the numerical parameters 

extracted directly from the DHM phase images by deep learning were highly 
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consistent with those obtained by thresholding the GFP images (Fig 4B). The 

histograms representing the number of nucleoli per cell nucleus computed from the 

fluorescence images and those computed from the DHM phase images are nearly 

identical (Fig EV4B). The precision, sensitivity, and specificity computed from the 

confusion matrix were respectively >64%, >64%, and >80%, when one, two, or three 

nucleoli were counted (Fig EV4C). 

As discussed in the Introduction, pixel intensity has a biological meaning in DHM 

phase images. On this basis, we introduced the ‘nucleolar optical thickness’ as a 

novel parameter corresponding to the mean nucleolar DHM intensity (Fig 4B). For 

HeLa cells, the nucleolar optical thickness was ~150. Precisely, it was 155 when 

extracted directly from the phase images by deep-learning-based segmentation, and 

152 when binary masks generated by fluorescence thresholding were applied to 

DHM phase images (Fig 4B).  

Once established this new method for extracting quantitative nucleolar parameters, it 

was important to test its robustness. An independent dataset based on 50 new 

images was produced. The two datasets were acquired by independent scientists 

more than two years apart.  The comparative analysis revealed high consistency of 

the extracted parameters (Fig 4B). The differences observed may reflect marginal 

metabolic fluctuations associated with cell passage number, medium batch, etc. 

 

Changes in the material state of the nucleolus can be detected by DHM 
At this stage, we wanted to explore the potential use of the newly defined nucleolar 

optical thickness. With recent increased interest in cell biology for soft matter 

research and biophysics, it has become clear that the material state of a cell can be 

modulated locally, notably by use of optogenetics, with an impact on function. We 

were particularly interested in learning if DHM might be suitable for assessing 

different material states of the nucleolus.  

To test this idea, we designed an experiment where we converted the nucleolus from 

a liquid to a gel by use of optogenetics (Zhu et al., 2019). Briefly, we engineered a 

Cry2olig tag-containing nucleolar construct and expressed it directly from the 

genome of an HEK293 cell. The Cry2olig tag is known to self-polymerize upon 

exposure to blue light (488 nm), this leading to protein aggregation and a change in 

material state (Fig 5A-B)(Taslimi et al, 2014; Zhu et al., 2019). To ascertain 

nucleolar targeting and efficient mixing of the Cry2olig fusion protein with the 
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nucleolar phase, a nucleolar localization signal (NoLS) was inserted into the 

construct in addition to an intrinsically disordered domain (IDR).  Additionally, an 

mCherry tag was used to monitor subcellular distribution by fluorescence microscopy 

and protein mobility by fluorescence recovery after photobleaching (FRAP).  

Upon exposure to blue light, the mobility of the Cry2olig protein construct decreased, 

confirming gelation of the nucleolus (Fig 5C-D). We used DHM to compare the 

nucleolar optical thicknesses of 380 gelated and non-gelated nucleoli. In cells 

exposed to blue light, we observed a significant 23% increase in nucleolar optical 

thickness. In conclusion, DHM can efficiently distinguish nucleolar material states 

(Fig 5E-F). 

In summary, considering that the nucleolus is a powerful yet underused biomarker 

and biosensor, there is a need to develop robust, easy-to-implement quantitative 

detection techniques that typically do not involve staining. This is exactly what we 

have achieved in this work, by applying digital holographic microscopy. We show 

that in multiple adherent and suspension human cells, DHM detects prominent 

signals in the nucleus, corresponding to nucleoli (Figs 2, EV2). The nucleolar nature 

of the structures detected in cell nuclei was demonstrated by colocalization with 

nucleolar antigens by correlative DHM-fluorescence (Fig 2C-E). The nucleolar 

antigens used for colocalization were either fluorescently tagged proteins (fibrillarin) 

or endogenous proteins detected with specific antibodies (PES1). Two of the three 

main layers of the nucleolus were represented in the colocalization studies, as 

fibrillarin and PES1 respectively label its dense fibrillar and granular components. 

The nucleolar nature of the observed structures was further confirmed by the 

presence of a perinucleolar chromatin ring visible by DAPI counterstaining (Fig 2B). 

Very fine alterations of nucleolar structure, induced by pharmacological treatments or 

by depletion of factors important for ribosome biogenesis (such as specific ribosomal 

proteins) were also perfectly detectable by DHM (Fig 3). 

To extract numerical features directly from DHM phase images, we have developed 

a deep learning strategy and have trained convolutional neural networks for 

automatic recognition of the nucleus and nucleolus. From analysis of our images, we 

conclude that in HeLa cells, the mean number of nucleoli per cell is ~2.5, the mean 

nucleolar surface is ~24 µm2, and the mean ratio of nucleolar-to-nuclear area is 

~0.13 (Fig 4). Having extracted very similar numbers from our GFP images by 

thresholding and from our DHM images by deep learning, we conclude that our 
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analysis pipeline is robust. The extracted features largely correspond to published 

values (Caragine et al, 2019; Farley et al, 2015; Puck et al, 1956), although in 

published data the sampling was never as deep as the 3,000 to nearly 6,000 nucleoli 

analyzed here all at once. This type of numerical parameters has high potential value 

in basic research on ribosome biogenesis and in mechanistic studies of processes 

as essential as tumorigenesis, viral infection, senescence, neurodegeneration, and 

ageing, among others where nucleolar morphology has been shown to vary greatly.  

A unique aspect of DHM is that it provides information about optical thickness, which 

we used to define a novel nucleolar index. Reasoning that the novel index might be 

sensitive to the material state of the nucleolus, we have shown this to be the case, 

as nucleolar gelation was detected as a >23% increase in nucleolar optical thickness 

(Fig 5). 

In conclusion, we have established digital holographic microscopy as a powerful 

method for characterizing the nucleolus numerically without any staining. We have 

introduced a novel parameter, the nucleolar optical thickness, and proved it to be 

useful in studying nucleolar material state changes. We believe DHM will be widely 

applicable to the study of numerous other biomolecular condensates of natural or 

artificial origin. 
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MATERIALS AND METHODS 

Cell lines and cell culture  

Cell lines used 

All cell lines used in this work were purchased from ATCC and diagnosed by short 

tandem repeat (STR) profiling: HeLa (CCL-2), HCT116 (CCL-247), SiHa (HTB-35), 

MCF7 (HTB-22), U2OS (HTB-96), and A549 (CCL-185). HeLa-FBL-GFP cells have 

been described previously (Nicolas et al., 2016; Stamatopoulou et al., 2018). 

HCT116-FBL-GFP cells were generated by CRISPR-Cas9 editing, according to 

(Nakade et al, 2014). The LCL cell line is a kind gift from Dr Alyson W. MacInnes 

(Amsterdam UMC, The Netherlands). 

 

Cell culture conditions 

Cells were grown at 37°C under 5% CO2. HeLa, SiHa, and A549 cells were grown in 

DMEM (Lonza, BE12-604F) supplemented with 10% fetal bovine serum (Sigma, 

F7524), 1% penicillin-streptomycin mix (Lonza, DE17-602E). HCT116 and U2OS 

cells were grown in McCoy’s medium (Lonza, BE12-688F) supplemented with 10% 

fetal bovine serum, 1% penicillin-streptomycin mix. MCF7 cells were grown in EMEM 

(ATCC, 30-2003) supplemented with 10% fetal bovine serum, human recombinant 

insulin at 0.01 mg/mL (Sigma, I9278), and 1% penicillin-streptomycin mix. LCL cells 

were grown in RPMI (Lonza, BE12-167F) supplemented with 15% fetal bovine 

serum and 2 mM L-glutamine (Lonza, BE17-605E). 

 

Cell preparation for DHM imaging 
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Unless otherwise stated, cells were grown in an Ibidi µ-slide I (Ibidi, 80106), fixed in 

methanol for 5 min at room temperature (RT), washed three times in 1x PBS (Lonza, 

17-516F), incubated in DAPI (Sigma, D9542, 250 ng/ml, prepared in 1x PBS), and 

washed three times in 1x PBS for 5 min prior to imaging. 

 

Correlative DHM-fluorescence detection 

Cells were fixed in 2% formaldehyde (Sigma-Aldrich, F8775) for 15 min at RT, 

washed three times in 1x PBS  for 5 min, permeabilized by incubation in 1x PBS 

/0.3% Triton X-100 (Sigma-Aldrich, X100)/5% BSA (Roche, 10735086001) for 1 hour 

at RT, incubated overnight at 4°C with an anti-PES1 antibody raised in rat (8E9, 

(Holzel et al, 2007)), and diluted 1:1000 in 1x PBS/0.3%Triton X-100/1% BSA, 

washed three times in 1x PBS for 5 min, incubated for 1 hour at RT with a goat anti-

rat Alexa Fluor 594 antibody (A11007, Thermofisher Scientific) diluted 1:1000 in 1x 

PBS/0.3% Triton X-100/1% BSA, washed three times in 1x PBS for 5 min, incubated 

for 15 min at RT with DAPI (250 ng/ml, prepared in PBS 1x), and washed three times 

in 1x PBS  prior to imaging. 

  

Drug treatment 

HeLa cells were grown overnight in Ibidi µslides and treated with the vehicle control 

(DMSO 0.1%, Sigma-Aldrich, D2650), roscovitine (50 µM, Sigma, R7772), DRB (32 

µg/mL, Sigma, D1916), actinomycin D (0.2 µg/mL, Sigma A1410), or CX-5461 (5 

µM), Sigma-Aldrich, 5092650001) for 2 hours prior to DHM imaging. 

 

siRNA depletion 

Cells were transfected with siRNAs as described in (Tafforeau et al, 2013). The 

siRNAs used (scramble, #4390843, RPL5, #s12153, and RPL11, #s12170) were 

purchased from Thermofisher Scientific. 

 

DHM Image capture  

Hardware 

Cells were observed by correlative DHM/fluorescence microscopy on a Zeiss Axio 

Observer Z1 driven by MetaXpress, equipped with LED illumination (CoolLed pE-2), 

and fitted with a QMOD off-axis differential interferometer (Ovizio s.a.) and a Retiga 

R3 camera (see Fig S1). Holograms were captured using transmitted light (HAL 
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lamp fitted with a single-band bandpass optical filter (Semrock, FF01-550/49-25)) 

converted with a dedicated software routine. The DHM phase was produced with 

OsOne. Holograms were imaged with a 20x (0.5 NA) EC Plan Neofluar (Zeiss, 

420350 – 9900) or a 40x (0.75 NA) EC Plan Neofluoar (Zeiss, 420360 – 9900) 

objective and converted to DHM phase with OsOne. 

 

Pixel-to-size (µm) conversion 

Image pixel size was determined as the camera pixel size multiplied by the binning 

divided by (objective magnification x lens magnification x C mount). In our set-up 

these values were: pixel size of the Retiga R3 camera, 4.54 x 4.54 µm; binning, 1x; 

objective magnification, 20x; lens magnification, 1.5x; C-mount, 1x. For capture at 

20x magnification (Figure 2B and all the images used in the quantitative analysis), 

the image pixel size was (4.54 µm x 1)/(20 x 1.5 x 1)= 0,151 µm/pixel. Note that the 

pixel-to-size conversion was validated empirically with a calibration slide (Pyser-SGI, 

02A00404). 

Image processing pipeline 

Description of the database 

The database was composed of two datasets of 75 and 50 triplets of images, 

respectively. A triplet consisted of aligned GFP, DAPI, and DHM images. The 

resolution of the GFP and DAPI images was 1460 x 1920 pixels and the resolution of 

the DHM images was 364 x 480. The DHM images were interpolated with a spline of 

order 3 so as to reach the same resolution as the GFP and DAPI images. All images 

were then cropped to 1408 x 1920, as the deep learning model used required every 

input image dimension to be a multiple of 2ହ. The nucleoli and nuclei were manually 

contoured on 25 triplets and 10 triplets on the first and second datasets, respectively. 

The two datasets were captured more than two years apart by two different 

scientists. 

 

Segmentation of the fluorescence images 

Segmentation of the nucleoli on GFP images 

The processing pipeline for segmenting the fluorescence images is depicted in 

Figure EV3A. The dynamic range of each GFP image was set at [0, 1] by dividing 

the intensity of each pixel by its maximum intensity across the dataset. In order to 
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lower the intensity variations across different images of the dataset, the GFP images 

were further standardized image-wise using the mean and standard deviation of the 

pixel intensities belonging to the nuclei in the considered GFP image (using the 

nuclei segmentation computed on the DAPI images). Then, nucleoli were identified 

as pixels whose intensity was above a certain threshold. A multistep approach was 

necessary because a single threshold did not allow both counting the number of 

nucleoli per cell nucleus and reliably measuring their area, as a too-low threshold led 

to fusion of neighbouring nucleoli while a too-high threshold led to underestimating 

the nucleolar area and loss of low-intensity nucleoli.  

 

Therefore, our approach used a sequence of thresholds to first identify all local 

maxima in the GFP image, after which a region-growing algorithm was used (i) to 

merge local maxima connected by sufficiently intense pixels and (ii) to connect 

illuminated pixels to their closest local maximum. 

 

The local maximum detection algorithm considers an increasing sequence of 

thresholds [𝑡଴, 𝑡ଵ, … , 𝑡௜, … , 𝑡ே] ranging from 𝑡଴ =  0.083 to 𝑡ே =  0.3 with an increment 

of 0.025. The algorithm iterates from the lowest to the highest threshold. The 

connected regions segmented with 𝑡௜ାଵ are always included in the regions obtained 

with 𝑡௜. The algorithm allows a region to split into several subregions when the next 

threshold is considered. However, it does not allow a region to disappear. After each 

thresholding operation, two morphological operations are applied: an opening (using 

a disk with radius 2 as a structuring element) followed by a closing (using a disk with 

radius 3 as a structuring element). These operations force very close pixels to 

belong to the same region. When the highest threshold is reached, the seed of each 

final subregion is defined as its maximum. Hence, there are as many seeds as 

subregions at the last iteration of the algorithm.  

 

Both region-growing algorithms expand from the computed seeds by adding 

adjacent pixels until a stopping pixel intensity criterion is met. The region-growing 

algorithms proposed for nucleolus counting and nucleolar area computation stop 

when the intensity of the added pixels reaches respectively max൫𝛼 ∗ 𝐼௦௘௘ௗ,௝, 𝜏൯ or 𝜏, 

where 𝐼௦௘௘ௗ,௝ is the pixel intensity of seed 𝑗 and 𝜏 is a constant threshold. Some cells 
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in mitosis (which do not display well-formed nucleoli) are also excluded during this 

processing step. The GFP signal of those cells has a low intensity and a large area, 

in contrast to that of cells in interphase, which have either a bright GFP signal or a 

small area. Cells in mitosis are detected when a region-growing algorithm with a 𝜏௠௜௧௢௦௜௦ stopping threshold provides a region with an area larger than 1000 pixels and 

a maximum intensity within the region smaller than 0.25. In those cases, the seed is 

ignored and no region is added. Both region-growing algorithms iterate on all the 

seeds. In some cases, small holes appear in the grown regions, which are filled. The 

parameters were tuned to 𝛼 = 0.85, 𝜏 = 0.15 and 𝜏௠௜௧௢௦௜௦ = 0.11. 

 

The outputs of automatic nucleolar segmentation are two black-and-white images 

(one for counting and the other for area computation) where white pixels belong to 

the nucleoli and black pixels to the background (Fig EV3A, see insets on the right).   

 

Segmentation of nuclei on the DAPI images 

The dynamic range of each DAPI image was set at [0, 1] by dividing the intensity of 

each pixel by its maximum intensity. The threshold for segmenting DAPI images was 

set independently on every DAPI image with an automatic approach relying on the 

fact that the pixel intensity distribution is bimodal in DAPI images. The background 

and nucleus pixel intensities cluster, respectively, in the first and second modes of 

the distribution. Every DAPI image was filtered with a Gaussian kernel of standard 

deviation 3 and the histogram of pixel intensities was computed. Then the threshold 

was set at the abscissa value where the histogram reached a local minimum 

between its two modes. This heuristic showed better results than the Otsu algorithm 

(Otsu, 1979) on the considered dataset. A closing operation (using a disk with radius 3 as a structuring element) was applied in order to fill any small holes occurring 

within the segmented regions and to obtain a smoother nucleus contour. As isolated 

pixels could appear because of thresholding, all regions smaller than 2,000 pixels 

were removed in order to deal with those false detections. Then a dilation operation 

with a disk of radius 2 was applied to the binary mask obtained after the thresholding 

operation. The output of the automatic nucleus segmentation is a black-and-white 

image where white pixels belong to the nuclei and black pixels to the background 

(i.e., a binary mask, Fig EV3A, see inset). Finally, the binary masks for nucleoli and 
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nuclei were multiplied element-wise in order to remove potential falsely detected 

nucleoli outside the nuclei in the automatic nucleolus segmentation outputs (see ⊗ 
symbol in Figure EV3A).  

 

Segmentation of the DHM images 

Deep learning architecture 

Nuclei and nucleoli were segmented directly on DHM images by means of deep 

learning. We used 2D U-net, a state-of-the-art deep learning architecture for 

biomedical image segmentation (Falk et al., 2019; Ronneberger et al, 2015). This 

architecture is a parameterized mathematical function (or model) that maps an input 

image to a desired output representation with the same size as the input image. In 

this study, the output representation is an image where the intensity of every pixel is 

defined between 0 and 1 by a sigmoid function, so that pixels that are close to one, 

i.e. above 0.5, are classified as a part of a nucleolus, whereas other pixels are 

classified as background pixels. The same approach is followed for nucleus 

segmentation. The inner parameters (called weights) of the deep learning model are 

adapted automatically through a training procedure in order to perform the desired 

task. This is performed by providing pixel-wise nucleolus or nucleus binary labels to 

the network in addition to the input images. The training phase proceeds iteratively, 

by randomly selecting small subsets of samples in the training dataset and adapting 

the neural network inner weights so that the output predictions fit the desired labels. 

Once a model is trained, it is used to segment new images, unseen during the 

training phase. During this testing phase, only input images are provided to the 

network, which then outputs a binary image with segmentation of the nucleolus or 

nucleus.  

 

2D U-net belongs to a category of deep learning architectures called convolutional 

neural networks. These networks are particularly suited for image analysis, as a 

convolution operation acts as a filter that extracts image patterns. Simple filters can 

extract edges or corners, but when multiple filters are stacked, complex patterns can 

be recognized in images. Convolutional neural networks are essentially stacking 

filters organized in so-called convolutional layers. The 2D U-net model also uses 

maxpooling layers, in order to merge semantically similar features into one, and 
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rectified linear units (ReLu) as non-linear activation functions (LeCun et al, 2015). 

The full architecture of the network is shown in Figure EV3B. The model was trained 

using Dice loss (Léger et al, 2018). The Adam optimization algorithm was used with 

a fixed learning rate of 10ିସ (Kingma & Ba, 2014). The number of epochs (i.e., the 

number of cycles through the full training set) was chosen so that convergence was 

reached. The batch size (i.e., the number of images in every training iteration) was 

set at one.  

For segmentation of the nucleoli, six U-net models were trained in parallel on the 

same set of training images, but considering different weight initializations. During 

the testing phase, segmentations were computed with all six models. A pixel was 

then classified as a part of the nucleolus if at least two predictions labeled it as such. 

This strategy increases the robustness of the approach. For segmentation of the 

nuclei, a single U-net model was used.  

Learning strategy 

The learning strategy is shown in Figure EV3C. Each DHM image was first 

normalized by dividing its pixels by their maximal intensity. Then, two separate deep 

learning models were trained. One segmented the nucleoli and the other segmented 

the nuclei. The nucleolus and nucleus segmentation masks automatically produced 

from the fluorescence images were used as labels during the training phase. For 

nucleolus segmentation, the binary masks obtained for estimating the nucleolar area 

were used. During the test phase, the processing pipeline analyzed only the DHM 

images, and the nucleolus and nucleus prediction binary masks were multiplied 

element-wise in order to remove potential false nucleoli detected outside the nuclei 

in the automatic nucleolus segmentation output (see ⊗ symbol on Figure EV3C). 

 

We performed 3-fold cross-validation on the 75 images of the first dataset. This 

consisted in partitioning the 75 images into three subsets of 25 images. The model 

was trained on two subsets (i.e., on 50 images), with subset switching in order to test 

the model on all 75 images. This approach allowed computing the statistics on 75 

images without reporting results on the training images. No model retraining was 

considered for segmentation of the 50 images of the second dataset. One of the 

three models used for predictions on the first dataset was arbitrarily chosen. 
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Postprocessing for statistical computation 

To remove clustered cells and cells whose nucleus touched the border of the 

images, a postprocessing step was automatically performed, as such cells may bias 

the statistics. Clustered cells were detected from the binary masks used for nucleus 

segmentation. In those images, isolated cells have a convex elliptical nucleus, 

whereas clustered cells have overlapping nuclei, leading to non-elliptical and 

concave shapes. Hence, clustered cells are detected by identifying those concave 

shapes. This is done by computing the ratio of the area of the considered region to 

the area of its convex hull. If the ratio is smaller than 0.95, the aggregated nuclei are 

removed from the automatic nucleus segmentation output (and the corresponding 

nucleoli as well). This postprocessing was applied to the segmentation results 

obtained on both the fluorescence and DHM images. 

 

Calculation of the nucleolar optical thickness 

To compute the nucleolar optical thickness, we used the mean intensity of a fixed 

area. We used a 12-pixel area size throughout this work. Using a 50-pixel area size 

provided similar results (data not shown). 

 

Production of nucleolar Cry2olig cell line 

An mCherry-Cry2olig sequence was amplified from plasmid pHR-mCh-Cry2olig 

(Addgene #101222)(Shin et al, 2017), using 5’-

GCATCACCACCATCACCATGCCTGCAGGCTCGAGATGGTGTCTAAAGGCGAGG

-3’ and 5’-CGGGCCCTCTAGACTCGATCAGTCACGCATGTTGCAGG-3’ as primers. 

The PCR fragment was integrated into the pcDNA5/FRT/TO plasmid (Thermo 

Fisher) by InFusion Snap assembly (Takara). This plasmid was linearized with Sbf I 

and Xho I and a synthetic g-block (IDT) containing the NoLS of SF3B2 (Scott et al, 

2010), and the RGG domain of LAF1 was inserted (Elbaum-Garfinkle et al, 2015). 

HEK293 Flp-In™ T-REx™ cells (Thermo Fisher) were co-transfected with the final 

plasmid and the pOG44 plasmid (Thermo Fisher), and stable integrated clones were 

selected with hygromycin. 

 

FRAP analysis of the nucleolar Cry2olig cell line 

Cells were seeded into Lab-Tek chambered coverglass slides (Thermo Fisher). 

Expression of the construct was induced by incubation with 1µg/ml doxycycline for 
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24 h. Induction of expression was confirmed by western blotting (data not shown). 

The cells were kept in the dark after induction of expression. Imaging was performed 

with a 63x/1.4 oil DIC objective (Plan-Apochromat, Zeiss) on a Zeiss Axio 

Observer.Z1 microscope driven by MetaMorph (MDS Analytical Technologies, 

Canada) and equipped with a Yokogawa spinning disk confocal head, an iLas 

multipoint FRAP module, an HQ2 CCD camera, a laser bench from Roper (405nm 

100mW Vortran, 491nm 50mW Cobolt Calypso and 561nm 50mW Cobolt Jive), and 

a stage-top incubator system (Live Cell Instruments) providing stable 37°C and 5% 

CO2. FRAP images were acquired over 5 min in 500 ms intervals. A defined area 

was bleached by a 98% pulse of the 561 nm laser for 50 ms. Activation of Cry2olig 

oligomerization was achieved with a 500 ms 5% 488 nm laser pulse.  

 

 

Quantification analysis of the nucleolar Cry2olig cell line 

For optical density analysis, an 12-pixel area at the center of each nucleolus was 

marked and the mean intensity in the DHM phase images was calculated. The 

operator was blinded to the aggregation state of the cells.  Three hundred eighty 

nucleoli were analyzed (173 liquid-state nucleoli and 207 gel-state nucleoli). 

Statistics: liquid state = 173 nucleoli analyzed (mean 156.5/STD 33.58/SEM 2.55); 

gel state = 207 nucleoli analyzed (mean 192.8/STD 28.88/SEM 2.01). Mann-Whitney 

test p<0.0001. 
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FIGURE LEGENDS 
Figure 1. Principle of digital holographic microscopy (DHM).  
A In brightfield microscopy, a light source illuminates an object (here illustrated as a 

duck), dense areas of the specimen absorb light, and the transmitted light is 

projected and recorded as an image. 

B In DHM, in order to generate an ‘interference pattern’ or hologram, 1: an 

illumination source is split into an ‘object beam’ (object wave light) and a ‘reference 

beam’ (reference wave light), 2: the object beam passes through the sample and is 

subjected to a phase shift, creating the ‘object wave front’, 3: the ‘object wave front’ 

and the ‘reference wave front’ are combined to interfere and to create a hologram 

which is captured with a CCD camera,  4: a numerical reconstruction algorithm is 

used to produce a phase image from the digitally captured hologram. The phase 

image, which represents the optical thickness of the object at each point, can be 

displayed as a pseudo 3-D map using pixel intensity. 

 

Figure 2. The nucleolus can be detected by DHM. 
A (Left) HeLa cells visualized by DHM. In each cell, the contour of the nucleus is 

readily detectable (blue arrowhead); within the nucleus one or several intense 

structures are detected (red arrow); these correspond to nucleoli. Scale bar, 20 µm. 

(Right) Pseudo 3-D map display of the image shown on the left, based on pixel 

intensity representing the optical thickness. 

B HeLa cells stably expressing the green-fluorescently-tagged nucleolar protein 

fibrillarin (HeLa-FBL-GFP) observed by correlative DHM-fluorescence microscopy. 

Cells were stained with DAPI, which labels the DNA-rich nucleoplasm. The 

hologram, DHM phase, green fluorescence (GFP), and DAPI signals are shown. 

Insets, magnification of an individual cell nucleus, illustrating the perinucleolar 

chromatin ring (arrowheads in the DAPI panel). Scale bar, 20 µm. 

C HeLa-FBL-GFP and HCT116-FBL-GFP cells observed by correlative DHM-

fluorescence microscopy. The perinucleolar chromatin ring is also visible in the DAPI 

channel (white arrowhead). 

D Quantification traces of the DHM phase (in gray), green fluorescence (in green), 

and DAPI (in blue) signals. 

E Immunodetection of the nucleolar protein PES1 in HeLa and LCL cells visualized 

by correlative DHM-fluorescence microscopy. PES1 was imaged in red (Texas red, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.17.533098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.533098
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 27 of 31 

TxRed). In panels C and E, the DAPI, green fluorescence, and DHM phase signals 

are shown. Insets, magnification of an individual cell nucleus. Scale bar, 20 µm. 

 
Figure 3. Nucleolar alterations can be detected by DHM. 
Diverse nucleolar alterations were induced in HeLa-FBL-GFP cells and observed by 

correlative DHM-fluorescence microscopy. 

A Drug-induced nucleolar alterations. Cells were treated with the vehicle control 

(DMSO 0.1%), DRB (32 µg/mL), roscovitine (50 µM), actinomycin D (0.2 µg/mL), or 

CX-5461 (5 µM) for 2 hours. Scale bar, 20 µm. 

B Nucleolar alterations induced by ribosomal protein knockdown. HeLa-FBL-GFP 

cells were treated for 3 days with an siRNA (10 nM) specific to the mRNA encoding 

ribosomal protein uL18 or uL5 or with a non-targeting scramble control (SCR). Scale 

bar, 20 µm. 

 

Figure 4. Nucleolar parameter analysis.  
A Illustration of image segmentation of HeLa cells stably expressing fibrillarin-GFP. 

The GFP channel was segmented by thresholding and the DHM phase by deep 

learning. 

On the left figure: red, automatic segmentation of nucleoli on GFP images by ‘region 

growing’, for computing the nucleolar area; blue: automatic segmentation of nucleoli 

by ‘region growing’, for counting; green: automatic segmentation of the nuclei by 

thresholding. On the right figure: red, automatic segmentation of nucleoli (for 

counting, area computation, and nucleolar optical thickness computation); green, 

automatic segmentation of the nuclei.   

B Data analysis. The parameters were extracted automatically by thresholding 

(fluorescence) or deep learning (DHM phase). The nucleolar optical thickness was 

calculated as the mean DHM intensity of a fixed area. To benchmark the robustness 

of our approach, data captured more than two years apart by two different scientists 

were compared (75-image set and 50-image set).  

 

Figure 5. Material state alterations can be detected by DHM. 
A Structure of the Opto-tag construct used. NoLS, nucleolar localization signal; IDR, 

intrinsically disordered region; mCherry, fluorescent tag for microscopy; Cry2olig; 
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self-polymerization tag activated upon blue light exposure (see Materials and 

Methods for details). 

B Rationale of material state change: upon exposure to blue light, the opto-tag 

construct self-polymerizes, turning the nucleolus from a liquid to a gel. 

C, D Fluorescence recovery after photobleaching (FRAP) in control cells (liquid 

state) and cells exposed to blue light (gel). Time scale (t), secs. FRAP analysis was 

conducted on the same cells before and after blue-light-induced protein aggregation. 

Panel C presents an example of a photobleached cell and panel D, the matching 

FRAP curves.  

E DHM phase images of cells prior to and after exposure to blue light. Black circle, a 

constant disk area defined for quantification (12 pixels). 

F Quantification of optical thickness in DHM phase images. Three hundred and 

eighty nucleoli were quantified. Nucleolar gelation led to a 23% increase in the 

nucleolar optical thickness index. ****, Mann-Whitney test, p<0.0001. 

 

EXPANDED VIEW FIGURE LEGENDS 
Figure EV1. Off-axis differential interferometer (QMOD) setup used in this 
work. 
Description of the beam path and microscope configuration used. The diagram 

illustrates the detailed beam path in our QMOD setup. A purposely built versatile 

“plug in” DHM adapter (QMOD, developed together with Ovizio s.a.) was connected 

between the lateral port of a Zeiss inverted microscope and a Retiga R3 camera 

(Qimaging) used for imaging the DHM phase and all fluorescence channels. The 

camera was driven from the MetaXpress (Molecular Devices) environment. Images 

were processed with OsOne (Ovizio). Digital holograms were recorded with an 

incoherent light source (HAL lamp) on an inverted microscope adjusted for proper 

Köhler illumination and coupled to a QMOD interferometer and CCD camera. A 

bandpass filter (BP) was used to increase the coherence of the light and obtain the 

partial coherence required for holography. The image forming light rays passing 

through the specimen (S) were captured with the microscope objective (O) and 

directed from microscope lens L1 to the QMOD interferometer. In the QMOD, a 

diffraction grating G induced splitting of the incident light beam into a diffracted beam 

(1, reference) and a non-diffracted light beam (2, object beam). A second lens (L2) 

placed at focal distance from the grating G reshaped both the diffracted and non-
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diffracted beams into beams parallel to the optical axis. A wedge (W) inserted in the 

optical path of the object beam induced a slight shift of the images produced by the 

diffracted and non-diffracted light beams. C is a compensating optical module placed 

in the optical path of the non-diffracted light beam to compensate for the light shift 

introduced by W in the diffracted beam. The diffracted beam is then recombined with 

the object beam and focalized by means of objective lens L3 on the recording plane 

of a CCD camera, where the hologram is recorded. LED, illumination; FF, 

fluorescent filter cube. Fluorescence imaging: excitation illumination is emitted by a 

light-emitting diode (LED) and is directed to the sample (S) through a fluorescence 

filter cube (FF). Fluorescence emission by the specimen is collected by the objective, 

passes through the filter cube and L1, enters the QMOD, and finally reaches the 

CCD camera. 

 

Figure EV2. DHM detection of the nucleolus in cell lines of various origins. 
The various cell lines indicated were observed by correlative fluorescence-DHM. 

Cells were stained with DAPI. An example of a perinucleolar chromatin ring, lining 

the nucleolus, is highlighted with an arrowhead in the HeLa-FBL-GFP panel for 

reference (see Fig 2B for details). Scale bar, 20 µm. 

 

Figure EV3. Image processing pipeline. 
A Segmentation pipeline of fluorescence images. The dynamic range of the GFP 

and DAPI images was normalized to [0, 1]. GFP images were further standardized 

image-wise. Seeds were automatically positioned on the pixels with local maximum 

intensity in the GFP images. Starting from those seeds, region-growing algorithms 

were used with a constant threshold for nucleolus area estimation and an adaptive 

threshold for counting. 𝐼௦௘௘ௗ,௝ is the pixel intensity of seed j, 𝜏 the constant, and 𝛼 a 

scalar between 0 and 1. Unrealistic holes remaining in segmented nucleolar masks 

were filled in a postprocessing step. After normalization, the DAPI images were 

filtered with a Gaussian kernel and an adaptive threshold was applied. The threshold 

was adapted for every DAPI image on the basis of the background and foreground 

(i.e., nucleus) pixel intensity distributions. Further postprocessing of the segmented 

nuclear masks included a morphological closing operation, removal of false 

detections, and a final morphological dilation operation. The symbol ⊗ denotes 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.17.533098doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.17.533098
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 30 of 31 

pixel-wise multiplication between binary masks to ensure that only nucleolar pixels 

contained within the nuclear area were considered to be bona fide nucleoli. The 

binary mask output of fluorescence image segmentation is illustrated (insets).  

B Architecture of the 2D U-net convolutional neural network. Convolution operators 

are filters that extract image patterns useful for segmentation. The analysis path (left 

part) allows capturing context, whereas the synthesis path (right path) and skip 

connections allow retrieving high output resolution.    

C Segmentation pipeline of DHM images. Two neural networks were trained, one 

with binary masks of nucleoli obtained by segmentation of the GFP images, the other 

with binary masks of nuclei obtained by segmentation of the DAPI channel. The 

binary mask output of DHM image segmentation is illustrated (insets).  

Figure EV4: Benchmarking of data analysis. 
A Conservation of the mean nucleolar area according to the number of nucleoli per 

cell. The predicted value is a theoretical upper limit, considering that the area 

occupied by a single spherical nucleolus is multiplied by N1/3 when the nucleolus is 

partitioned into N identical spheres. 

B Histogram representing the number of nucleoli per nucleus automatically counted 

on the fluorescence images (left) and DHM images (right). Confusion matrices 

assessing automatic counting of nucleoli on the fluorescence images. The matrices 

compare the manual and automatic counts of nucleoli on 25 images. Element (i,j) in 

the confusion matrix is the number of nuclei with i nucleoli for which the algorithm 

counted j nucleoli. The elements on the main matrix diagonal were correctly counted. 
The lower the total value of elements outside the main diagonal, the better the 

counting. 
C Sensitivity (true positive rate), specificity (true negative rate), and precision 

(proportion of properly classified cells) of the cell classification based on their 

number of nucleoli. Sensitivity provides the probability of counting 𝑛 nucleoli 

amongst cells truly displaying 𝑛 nucleoli. Specificity provides the probability of not 

counting 𝑛 nucleoli amongst cells displaying 𝑛 nucleoli. Precision provides the 

proportion of cells correctly classified. The closer the sensitivity, specificity, and 

precision are to 1, the better the approach. 
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Figure EV5. Comparison of segmentation of the GFP signal by thresholding 
and of the DHM signal by deep learning.  
A Segmentation of the GFP signal by thresholding. Red, automatic segmentation of 

nucleoli on GFP images by ‘region growing’, for computing the nucleolar area; blue: 

automatic segmentation of nucleoli by ‘region growing’, for counting; yellow: manual 

annotation for validation of the nucleolus counting algorithm; green: automatic 

segmentation of the nuclei on GFP images by thresholding; gray, eliminated cells 

(image edges, clustered cells, etc.). 

B Segmentation of the DHM signal by deep learning. Red, automatic segmentation 

of nucleoli on DHM images by deep learning (for counting, area computation, and 

nucleolar optical thickness computation); green, automatic segmentation of the 

nuclei on DHM images by deep learning; yellow, same as in panel A. 

 
SUPPLEMENTAL MOVIES 
Movie 1. DHM live-cell imaging through mitosis. 
Representative live imaging of HeLa-FBL-GFP cells. Cells were imaged with a 20x 

objective over a 12-h period in 1-min intervals in the DHM and fluorescence modes.   

 

Movie 2. DHM live-cell imaging upon roscovitine treatment. 
Live imaging of HeLa-FBL-GFP cells treated with 50 µM roscovitine in 0.1% DMSO. 

The red arrow indicates the first detectable changes in nucleolar morphology. Cells 

were imaged with a 20x objective over a 3-h period in 30-s intervals in the DHM and 

fluorescence modes.    
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